Clinical Image

Open Access, Volume 3

Beautiful aspect of hydatid cyst

Rita Oze Koudouhonon

*Resident in Radiology, CHU Ibn Sina, Rabat, Morocco.

Suzanne Rita Aubin Igombe

*Radiology Specialist, CHU Ibn Sina, Rabat, Morocco.

Khadija Ben Elhosni

*Associate Professor in Diagnostic and Interventional Imaging, Central Radiology Department, CHU Ibn Sina Rabat, Morocco.

Ittimade Nassar

*Associate Professor in Diagnostic and Interventional Imaging, Central Radiology Department, CHU Ibn Sina Rabat, Morocco.

Nabil Moatassim Billal

*Associate Professor in Diagnostic and Interventional Imaging, Central Radiology Department, CHU Ibn Sina Rabat, Morocco.

*Corresponding Author: Rita Oze Koudouhonon

Resident in Radiology, CHU Ibn Sina, Rabat, Morocco.

Tel: +212 635349572;

Email: ritaoze23@gmail.com

Received: Dec 26, 2021

Accepted: Feb 09, 2022

Published: Feb 16, 2022

Archived: www.jcimcr.org

Copyright: © Koudouhonon RO (2022).

DOI: www.doi.org/10.52768/2766-7820/1663

Keywords: hydatid cyst liver; CT; calcified floating membranes.

Description

Hydatid Disease (HD) is a mild endemic disease caused by Echinococcus granulosus. It can affect any system of the body, with hepatic predilection [1,2]. Most often asymptomatic, the literature describes 5 evolutionary stages ranging from simple cysts, with it poses a problem of differential diagnosis in its simple form to complicated forms that may or may not be calcified.

It is made up of three sofas; the pericyst, ectocyst, and endocyst. The CT scan plays an important role in imaging complicated hydatid cysts. The most common are rupture and superinfection. Occurring in 50 to 90% of cases, the rupture can be communicative or contained. When contained, the endocyst detaches from the pericyst appearing as a curvilinear structure or floating membranes which may subsequently calcify. This aspect is found on ultrasound, or on a CT scan [1,3]. The case on this hepatic ultrasound (Figure 1A) generated a grossly oval lesion, containing calcified serpiginous structures (floating membranes), generating shadow cones which mask the posterior reinforcement of this non-vascularized fluid mass on color Doppler (yellow star).

A complementary abdominal CT scan (Figure 2) in axial slices not evaluated (B), infectious (C), shows two hepatic lesions (segments 7 and 1) liquid, rounded with regular contours, containing calcified floating membranes (orange arrow).
Figure 1: The case on this hepatic ultrasound generated a grossly oval lesion, containing calcified serpiginous structures (floating membranes), generating shadow cones which mask the posterior reinforcement of this non-vascularized fluid mass on color Doppler (yellow star).

Figure 2: A complementary abdominal CT scan (Figure 2) in axial slices not evaluated (B), infectious (C), shows two hepatic lesions (segments 7 and 1) liquid, rounded with regular contours, containing calcified floating membranes (orange arrow).

References

