The use of 18F-Choline-PET/CT in chronic lymphocytic leukaemia

Ken Kudura1,2,*; Beatrice Kern3; Martin HK Hoffmann1,2; Kwadwo Antwi1,2

1Department of Radiology, St Clara Hospital AG, Basel, Switzerland.
2Department of Nuclear Medicine, St Clara Hospital AG, Basel, Switzerland.
3Department of Visceral Surgery, St Clara Hospital AG, Basel, Switzerland.

*Corresponding Author: Ken Kudura
Department of Radiology, Department of Nuclear Medicine, St Clara Hospital AG, Basel, Switzerland.
Email: ken.kudura@claraspital.ch

Received: Mar 07, 2022
Accepted: Mar 30, 2022
Published: Apr 06, 2022
Archived: www.jcimcr.org
Copyright: © Kudura K (2022).
DOI: www.doi.org/10.52768/2766-7820/1781

Report

The use of 18F-2-Fluoro-2-Desoxy-D-Glucose Positron Emission Tomography/Computed Tomography (FDG-PET/CT) has become an integral part of patient management in many lymphoid malignancies. However, the diagnostic accuracy of FDG-PET/CT in some indolent lymphoid malignancies with commonly low FDG-avidity, including Chronic Lymphocytic Leukaemia (CLL) can still be challenging in clinical routine [1-3,6,9].

CLL is defined as a low-grade proliferative B-cell proliferative disease often indolent, which can in about 5% of the cases turn into a more aggressive malignancy, most commonly into Diffuse Large B-Cell Lymphoma (DLBCL). This transformation is called Richter transformation, often detected too late and associated with a poor prognosis. Therefore, accurate imaging of CLL at an early stage could be useful for the management of the disease and improve patient's survival [4,5,7,8,10].

We report the case of a 76-years-old male patient with initial clinical symptoms of hyperparathyroidism. Initial blood samples were suspicious of primary hyperparathyroidism with the following results: Calcium 2.7 mmol/l, phosphate 0.7 mmol/l, parathormone 49.3 pg/ml as well as an increase excretion of calcium in urine.

An ultrasound of the thyroid and parathyroid glands was performed displaying a small (size 12 X 6 X 11 mm), ill-defined, hypoechoic lesion posterior and cranial to the left thyroid lobe (Figure 1).

An ultrasound of the thyroid and parathyroid glands was performed displaying a small (size 12 X 6 X 11 mm), ill-defined, hypoechoic lesion posterior and cranial to the left thyroid lobe (Figure 1).

In suspicion of a parathyroid adenoma, scintigraphy using 99 m-Tc sestamibi (MIBI) with planar acquisitions and Single-Photon Emission Tomography (SPECT/CT) of the parathyroid glands was carried out for localization diagnostics. This however proved negative with no evidence of increased tracer uptake in the thyroid gland or parathyroid glands (Figures 2,3).
Figure 1: Ultrasound of the thyroid gland and parathyroid glands. The arrow shows an a small (size: 12 x 6 x 11 mm), ill defined, hypoechoic lesion posterior and cranial to the left thyroid lobe.

Figure 2: Scintigraphy of the parathyroid glands with planar acquisitions 15, 30, 45 and 60 minutes after the injection of 454 MBq 99m-Tc sestamibi (MIBI). No evidence of a suspicious tracer uptake in the parathyroid glands in the planar acquisitions.

Figure 3: Single-photon emission tomography (SPECT/CT) of the parathyroid glands acquired 2.5 hours after the injection of 454 MBq 99m-Tc sestamibi (MIBI). The arrow shows the morphological correlate to the ill-defined hypoechoic lesion seen posterior and cranial to the left thyroid lobe in the ultrasound with no evidence of tracer uptake.

Following international recommendations in the case of a high clinical suspicion for a parathyroid adenoma, a \(^{18}\)F-fluorocholine-positron emission tomography/computerized tomography (F18-Choline PET/CT) was performed displaying a discrete tracer uptake cranial to left thyroid lobe (Figure 4).

Based on these findings, a parathyroidectomy was recommended and performed after patient consent. Intraoperatively, no enlarged parathyroid gland could be localized cranial to the left thyroid lobe but rather an enlarged cervical lymph node in the left cervical region in level III. The lymph node was excised and further investigated.

Histology of the resected left cervical level III lymph node cranial to the left thyroid lobe displayed an extensive infiltration of small cell lymphocytes population with the immunocytochemical expression of CD20, CD5 and some expression of CD23, corresponding to a B-CLL manifestation.

A literature search was performed in the PubMed database using the following keywords “choline” AND “PET” AND “leukaemia” or “CLL” with no results.

Conclusion

To the best of our knowledge, this case might be the first one to report the detection of a CLL manifestation using F18-Choline PET/CT. Given the commonly low FDG-avidity of CLL at an early stage on FDG-PET/CT scans and the risk of Richter transformation with poor prognosis further investigations on whether F18-CholinePET/CT can detect CLL manifestations should be considered.

References

4. Jain, Nitin, und Michael J. Keating. Richter Transformation of

