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Introduction

The respiratory system is a network of tissues and organs 
and is one of the most intricate systems in the human body [1]. 
The therapeutic effectiveness of inhaled aerosols depends on 
their spatial distribution within the respiratory tract and on the 
amount of the Active Pharmaceutical Ingredients (APIs) present 
in them [2-4]. However, the process of concentrating decom-
posed ambient particulate matter locally within the respiratory 
tract may lead to both lower and upper respiratory tract dis-
eases [5-7]. Hence, detailed characterization of aerosol particle 
transportation and deposition is essential to quantitatively ana-
lyze their therapeutic and deleterious effects upon inhalation. 
Additionally, deposition of aerosol particles in airways plays a 
crucial role in the delivery of aerosol drugs [4,8]. 

The study of aerosol transport and deposition due to bron-
chial tube airflow can improve our understanding of the dam-
aging or beneficial effects of their inhalation. The suspended 
particles in the aerosol are of numerous shapes and sizes rang-
ing from nano-sized particles (diameter less than 1 μm) to large-
sized pollens (diameter greater than 100 μm) including thera-
peutic aerosols, ultrafine dust, microbial aerosols, asbestos, 
pollen, and fumes [9-11]. 

Recognizing the size distribution of inhaled therapeutic/non-
therapeutic aerosols is beneficial for assessing the harmful or 
useful effect of using aerosol. In this study, we aim to detect 
and segment the aerosol particle sizes into three parts of a re-
spiratory system automatically using Machine Learning (ML) 
algorithms [8,11,12]. ML techniques employ a range of strate-
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gies and data to reproduce specific outputs from complex en-
gineering/biological systems. Image segmentation algorithms 
are subsets of ML techniques and are vital to many computers 
vision and image processing applications [13-15]. Segmentation 
is employed in many image processing fields such as medical 
imaging [16,17], object tracking [18,19], and satellite imaging 
[20-22]. The wide use of the segmentation algorithms can be 
attributed to the segmentation outcomes that directly affect 
the performance of the whole system [20,23]. Image segmenta-
tion strategies are broadly classified into four categories: edge-
based, region-based, threshold-based, and deep learning meth-
ods [24-26].

Region-based approaches primarily search for some seed 
points inside the image and appropriate region growing meth-
ods are employed subsequently to reach the boundaries of the 
objects [27,28]. Edge-based algorithms try to identify the edges 
or contours inside the input image. Therefore, segmentation is 
affected by a determination of the region margins inside the 
image. The threshold-based techniques generally employ the 
histogram of the input image for identifying single or multiple 
thresholds [29-31].

In the last few years, Deep Learning (DL) strategies have 
yielded remarkable success in better segmentation results 
compared to other hand-crafted feature extraction methods in 
the different fields of computer vision tasks [17,32-36]. Convo-
lutional Neural Networks (CNNs) are considered a type of DL 
model with high abilities for extracting and learning crucial 
features. Moreover, CNN models are able to obtain the best 
possible features needed for feeding to other models (classic 
models) [37,38]. 

In this study, we suggest a CNN-based strategy to recognize 
and segment particles inside the respiratory system. To inves-
tigate the decomposition of particles, the Weibel Airway (WA) 
model [39] was adopted in this study as indicated in Figure 1.

Figure 1: An example of a (a) simple respiratory system, (b) distri-
bution of inhaled therapeutic aerosols in the respiratory system.

The remaining parts of this paper are organized as follows: 
Initially, a texture descriptor approach is described in section 
2.1. The characteristics and architecture of the suggested CNN 
model are presented in section 2.2. In section 2.3, we propose a 
matching strategy to find all particles inside the image. Section 
3 describes the implementation details of the suggested model. 
Section 4 provides the conclusions.

Materials and methods

This section is divided into two sub-sections. Firstly, we de-
scribe the textural analysis that is useful to identify some sig-

nificant textural information. We subsequently describe the 
procedure for finding more informative features to identify the 
border of objects by employing a CNN model. 

Texture analysis (2.1)

Textural information as image features is very valuable 
in many computer vision and image processing applications 
[40,41]. There is a broad literature on textural analysis in the 
machine vision literature where the principal emphasis has 
been on synthesis, segmentation, and classification. Textural 
information is used as input features and has been employed 
in different applications such as medical image analysis, text 
analysis, and aerial and satellite image analysis as a descriptor 
[30,42,43]. 

In texture segmentation and classification, the aim is to di-
vide the input image into a set of similar textured regions (ho-
mogeneous). Some of these similarities are size, orientation, 
shape, texture, pattern, color, etc [44,45].

Figure 2: The procedure of extracting edges in eight different direc-
tions and obtaining final edge map.

In order to characterize textured images, various texture fea-
ture extraction techniques have been suggested. One can use 
traditional algorithms that employ a co-occurrence of matrix-
based methods [33], fractal analysis [46], and filter-based ap-
proaches such as Gaussian Markov random fields [47], wavelet 
[48], and Gabor [23]. The Local Directional Pattern (LDP) tech-
nique is one of the most popular strategies that focus on the 
boundaries of objects in pre-defined directions [49]. Hence, LDP 
is able to recognize more prominent edges using an edge detec-
tion approach called “Kirsch filters”. 

Kirsch filters (Kirsch kernels) are non-linear edge detectors 
and are utilized to explore the edge response values in eight 
directions in the vicinity. The results of applying Kirsch kernels 
to an input image are demonstrated in Figure 2. LDP features 
are achieved by calculating the obtained edge maps at each pix-
el position in all eight compass directions and creating a code 
from relative strength magnitude [49,50]. LDP converts the di-
rectional information of input images. Each bit of code is gener-
ated by considering local vicinity and obtaining robustness in 
noisy situations. The result of applying the LDP approach to an 
input image is demonstrated in Figure 3.

Our deep learning model (2.2)

In the previous step, we used a texture descriptor approach 
to extract significant features that are crucial in detecting the 
edges of all particles precisely. In this section, by employing a 
Convolutional Neural Network (CNN), we classify all the pixels 
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Figure 3: An example of applying LDP approach to an input image.

inside the image into edge and non-edge type of pixels. By do-
ing so, the exact borders of all circular objects (some of them 
are not visible completely) inside the image are detected.

The CNNs are popular and widespread deep learning (DL) 
pipelines that have become one of the most successful tech-
niques in the field of machine learning (ML). Typically, a CNN 
structure consists of four layers: 1) convolutional, 2) pooling, 3) 
activation, and 4) fully-connected layers [37,41]. 

The convolutional layers (conv layers) aim to learn hidden 
patterns and feature representations of the inputs [51]. Each 
neuron inside the feature map is connected to an area of neigh-
bouring neurons in the prior layer. Such neighbourhoods are 
referred to as the neuron’s receptive fields in the last layer. The 
new feature map is generated by convolving the input with 
a learned filter. For generating each feature map, the filter is 
shared by all spatial locations of the input [38,52,53].

Similar to conv layers, pooling operators include a predefined 
patch (window) that is slid over all areas in the input based on 
its stride, calculating an output for each point traversed by 
the pooling window [54]. However, unlike kernels in the con-
volutional layer and the cross-correlation computation of the 
inputs, the pooling layer contains no kernel. Normally, pooling 
operators calculate either the average (mean-pooling) or the 
maximum (max-pooling) value of the elements in the pooling 
window [26,55]. 

The Fully Connected Layers (FC) can end up with a Soft Max 
(SM) output layer to classify the input. The SM activation func-
tion is utilized in the output layer and is a multi-class version of 
the logistic regression [26,56,57]. 

Figure 4: Our implemented CNN model.

The employed CNN model is shown in Figure 4 and has two 
similar feature exploration routes for extracting high-level and 
low-level features. Each feature extraction route has four con-
volutional layers. The first two and the last two conv layers ex-
plore low-level and high-level features, respectively. The num-
ber of utilized filters in each route increases with the depth: 8, 
16, 32, and 64. A Rectified Linear Units (ReLU) layer is utilized 
for applying activation function in an element-wise manner. 

This layer is able to convert all the negative values to zero. We 
utilized a 2×2 max-pooling layer after each conv layer to de-
crease the dimension of the obtained feature maps. Moreover, 
in order to avoid memorization, a dropout of 0.15 is used. For 
increasing the training samples, two augmentation strategies 
are utilized including random rotations and random Gaussian 
noise [26,32,58]. The utilized parameters for training the CNN 
model are shown in Table 1.

Table 1: Parameters utilized for training the CNN model

Finding circular objects (2.3)

In the last section, we extracted all edges of objects. In this 
part, we propose a searching approach that draws some circles 
around each object (local area) to find the best match. This pro-
cess is demonstrated in detail in Figure 5. Inside a loop with 100 
iterations, we generate different circles (red circles in Figure 5) 
with random radiuses (close to the target radius). Next, by com-
paring the border of generated circles with the target, we are 
able to find the best circle that represents the occluded target 
and can be added to a list for finding the whole objects. In other 
words, we calculate the over fitting pixels created by overlap-
ping both borders of the object and the border of the generated 
circle to find the best fit. 

Figure 5: The process of drawing some circles around of each ob-
ject (local area) to find the best matching and recognize all objects.

Experiments 

Assessment metrics

Three techniques are employed to evaluate the segmenta-
tion performance, including recall, precision, and F1-score. Sen-
sitivity or recall is the True Positive Rate (TP). In other words, it 
is calculated by dividing the number of correct positive predic-
tions by the summation of true positive and False Negative (FN). 
In addition, precision is calculated by dividing the true positive 
by the total of true positive and False Positive (FP).

Parameters Value

Patch size 35x35

Optimizer Adam

Output number 2

Learning rate 0.001

Batch size 7000

Learning Rate Drop Factor 0.15

Max Epochs 50
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Experimental results and discussions

We conduct experiments on a private dataset containing 
10,000 images with the dimensions of 520×640. For evaluating 
the proposed method more accurately, we divide the respira-
tory system into three regions (upper, middle and lower) and 
evaluate each area separately. Figure 6 shows an example of 
dividing the respiratory system into three parts.

To have a clear understanding for comparison purposes, we 
use four other texture descriptors (Local Binary Pattern (LBP) 
[40], Local Directional Number Pattern (LDNP) [41], Local Ter-
nary Pattern (LTP) [59], and Fuzzy Local Ternary Pattern (FLTP) 
[60] to evaluate the segmentation performance. Quantitative 
results of different kinds of our structure are described in Table 
2.

For each index in Table 2, the highest PPV, Sensitivity, and 
F1-score are highlighted in bold. The results in Table 2 clearly 
demonstrate that our technique is able to obtain the highest 
sensitivity values in regions 1 and 2 and the highest score for 
region 3 is obtained by LDNP. The structures based on LTP and 
FLTP have achieved good accuracy, but these approaches may 
or may not work if given more color similarity in the local areas 
inside the input images. Besides, there is a minimum difference 
between the values of PPV using LTP and FLTP. Another interest-
ing point is that the worst scores for all measures are obtained 
using LBP in all areas. Additionally, the segmentation results in 
terms of PPV using LBP, LTP, and FLTP methods are generally 
under 90%. By employing the LDP strategy, all criteria are im-
proved in comparison to other approaches, but the sensitivity 
value in region 3 employing LDNP is still higher. 

Table 2: Comparison between the results of our strategy using the LDP model and four different texture descriptor techniques.

Method
PPV (%) Sensitivity (%) F1-score (%)

Region 1 Region 2 Region 3 Region 1 Region 2 Region 3 Region 1 Region 2 Region 3

Local Binary Pattern (LBP) [40] 76 72 71 74 71 68 75 71 69

Local Directional Number Pattern (LDNP) [41] 89 86 85 91 90 88 90 88 86

Local Ternary Pattern (LTP) [59] 86 82 82 88 86 83 87 84 82

Fuzzy Local Ternary Pattern (FLTP) [60] 87 82 83 89 84 83 88 83 83

Proposed method (LDP) 94 93 90 93 91 87 93 92 93

Figure 6: Dividing the respiratory system into three regions.

Discussion and conclusions

In this work, we presented a method for segmenting aero-
sol-based particles inside the respiratory system. We initially 
employed a texture descriptor technique to represent more 
unique features and for obtaining the border of each particle 
(object) more accurately. Then, by applying the original image 
and the encoded image to a CNN model, an edge map of the 
input image is created. The network only requires reasonable 
data for the training phase. Lastly, we suggested a fitting circle 
approach to compare each object with a lot of potential circles 
to find the best match and recognize the object. A comparison 
of the results obtained in this study with some texture descrip-
tor approaches is given in Table 2. The comparison with these 
approaches demonstrates that the proposed method segment 
aerosol-based particles in the respiratory system with at least a 
5% improvement in precision.
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