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Introduction

Cerebral infarction (CI) is a serious cerebrovascular infarc-
tion disease, which refers to a clinical event in which circula-
tory disturbances in the cerebral arteries lead to tissue ischemia 
and hypoxia and cause cerebral dysfunction rapidly [1]. CI has a 
high incidence, mortality and disability rate, and it has become 
a common disease that threatens human health and life expec-
tancy [2,3]. The American Heart Association estimates that by 
the year 2030 there will be an increase adults developing stroke 

in the United States, a projected increment of 20.5% from 2012 
[4]. Despite vigorous studies published during the last decades, 
treatment opportunities are still limited. At present, there are 
many therapeutic methods for CI, including antiplatelet thera-
py, anticoagulant therapy, brain protective agents, intravenous 
thrombolysis, intravascular thrombolysis and so on [5]. Among 
them, intravenous thrombolysis and intravascular thrombolysis 
are the most effective methods to treat patients with CI [6,7], 
but they are limited by a narrow time window. Within this time 
window, therapeutic efficacy is reduced continuously, accompa-
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nied by an increasing probability of serious complications such 
as hemorrhages [8]. Once brain cells die, the damage to the 
central nervous system is permanent. Therefore, these meth-
ods are suboptimal for functional recovery after injury.

Mesenchymal stem cells (MSCs) exist in almost all tissues, in-
cluding spleen, muscle, bone marrow, placenta, dermis, umbili-
cal cord, and so on [9]. Placenta and umbilical cord are known as 
the abundant sources of MSCs [10]. When a population called 
the umbilical cord matrix MSCs is isolated for the first time, it is 
demonstrated that these cells have the ability of self-renewal 
and high proliferation [11]. Moreover, in vitro, MSCs do not in-
duce proliferative response of allogeneic lymphocytes, because 
they are not immunogenic. According to the available evidence, 
human umbilical cord blood-derived mesenchymal stem cells 
(hUCB-MSCs) have remarkable characteristics including avail-
ability, being immunosuppressive, differentiation to other cell 
lines, being easy to isolate and expand, being safe from malig-
nant formation, and the possibility of auto-graft and allograft 
which make them a better candidate for clinical applications of 
stem cell-based therapies [13]. In recent years, the use of hUCB-
MSCs has received attention as a new alternative for treating CI 
in animal model. Many animal studies have shown that MSCs 
have great potential to serve as therapeutic agents for stroke 
treatment. MSCs in an ischemic area of the rat brain can differ-
entiate into nerve cells and improve the recovery of nerve func-
tion [14,15] and it can improve neurological deficits in stroke 
[16]. A study [17] also proved that the transplanted umbilical 
cord stem cells in an animal model of stroke improved the neu-
rological deficits through the secretion of neurotrophic growth 
factors. Another study [18] demonstrated that intravenous ad-
ministration of hUCB-MSCs after stroke can reduce infarction. 
However, the design projects, including hUCB-MSCs type, dose, 
number, route, and time interval, in each research are so differ-
ent that the final therapeutic effect is difficult to evaluate. As 
a result, the best way of hUCB-MSCs therapy remains unclear.

Therefore, we performed this meta-analysis to evaluate the 
efficacy and safety of hUCB-MSCs as a treatment in improving 
functional recovery of CI in animal model, to determine if the 
evidence from the animal studies of hUCB-MSCs supports its 
use in clinical practice.

Materials and methods

Literature search and inclusion criteria

Two researchers independently and systematically searched 
numerous electronic bibliographic databases, including 
PubMed, Embase, and Wanfang, and China National Knowl-
edge Infrastructure by the end of July 5, 2023. There were no 
restrictions on the language of publication in this search. This 
article was performed through using relevant guidelines [19] 
to select relevant studies between hUCB-MSCs and cerebral 
infarction. The following searching strategy was used: (“cere-
bral ischemia” OR “cerebral infarctions” OR “ischemic stroke” 
OR “ischemic cerebrovascular disease”) AND (“human umbili-
cal cord blood-derived mesenchymal stem cells” OR “umbilical 
cord blood mesenchymal cells” OR “hUCB-MSCs”). During the 
retrieval process, the two researchers independently searched 
and cross-checked the result, and discussed in disagreements, 
and the third researcher consulted if necessary.

Inclusion criteria: (1) Studies on animal model without re-
striction of species, sex, and modeling methods; (2) The treat-
ment group received monotherapy with hUCB-MSCs, and the 
control group received the same amount of nonfunctional sub-
stances or no treatment; and (3) Studies evaluating the effect of 
hUCB-MSCs therapy CI in animal model, such as the neurologi-
cal deficit scores and infarct size. 

Exclusion criteria: (1) Studies in vitro studies and human 
subjects; (2) Studies combined with other therapies; (3) Stud-
ies lacked relevant data; (4) Studies without a separate control 
group; and (5) Case reports, reviews, and duplicate publications.

Data extraction and methodological quality appraisal

To determine if a study should be included, two researchers 
independently searched the retrieved studies. We extracted the 
relative data using the pre-designed table and cross-checked 
the results. When faced with conflicts, we together discussed, 
and the third researcher negotiated if necessary. For each study, 
the following data were extracted: first author, year of publi-
cation, animal characteristics (species, sex, age), intervention 
details (dose, number, timing and route of hUCB-MSCs trans-
plantation), follow-up visit (observation time of outcomes after 
hUCB-MSCs therapy), measured the correlation with our prima-
ry outcomes, and research type. If only figures were presented 
in some studies, GetData Graph Digitizer software version 2.22 
was used to extract the data. According to the Cochrane Hand-
book for Systematic Reviews of Interventions (CHSRI) [20], we 
chose to combine the results of different subgroups into one 
treatment group for analysis to address the issue of the clas-
sification of the therapeutic drugs into subgroups in the original 
study.

We assessed the quality of the animal studies using the SYs-
tematic Review Center for Laboratory animal Experimentation 
(SYRCLE) risk-of-bias tool [21]. The assessment content covered 
deviations in ten areas, and each item was scored as one point. 
Each item was as follows: (a) sequence generation, (b) baseline 
characteristics, (c) allocation concealment, (d) random housing, 
(e) blinding (for animal breeders and researchers), (f) random 
outcome assessment, (g) blinding (for outcome evaluator), (h) 
incomplete outcome data, (i) selective outcome reporting, and 
(j) other sources of bias. Disagreements between the research-
ers were discussed and resolved through a discussion with the 
third researcher (Tao Wang).

Data analysis

All data were meta-analyzed using RevMan 5.4 provided by 
Cochrane collaboration. All variables were continuous data, and 
a standard deviation (SD) and 95% confidence interval (CI) were 
used to indicate the effect size. Statistical heterogeneity was 
expressed by I2 statistics. When I2 statistics was less than 50%, 
heterogeneity was small and acceptable, and we used the fixed 
effect model for meta-analysis. When I2 statistics was more than 
50%, heterogeneity was relatively large, and then the reason for 
high heterogeneity can be speculated by sensitivity analysis or 
subgroup analysis. Meanwhile, the random effect model can be 
used for meta-analysis. Funnel plots were used to examine for 
any potential publication bias in the studies.
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Results

Description of studies

The detailed selection process was illustrated in Figure 1. We 
initially searched 245 literatures during the searching of elec-
tronic database. Among them, 218 literatures were excluded 
after an intensive screening of the titles, abstracts, and the full 
text of relevant studies and so on. Finally, 27 articles [22-48] 
were included, including 14 Chinese [22-35] and 13 English ar-
ticles [36-48].

All animal models included in the studies were rats, mice, 
rabbits or beagles, including non-rodents (rabbits and beagles) 
used in 3 studies [28,37,39] and rodents (rats and mice) used in 
24 studies. In terms of gender, 1 study [37] was not mentioned, 
one study [40] was male and female animal model, and the rest 
were male animal model. 4 studies [22,36,40,43] mentioned 
the age of the experimental animals, ranging from postnatal 
day 12 to 3-4 months, and 12 [25,29-31,37,38,41,42,44-46,48] 
studies mentioned the animals as adult. In addition, the data 
representing the dose, transplantation number and transplan-
tation time of hUCB-MSCs were different among studies. In 
terms of transplantation route, there are tail vein, femoral vein, 
intranasal, intracerebral, basilar artery, intrathecal, penile vein, 
and intracarotid artery. Except for 2 studies [36,41] that didn’t 
mention it, the time of the last outcomes ranged from 24 hours 
to 6-7 weeks. Regarding primary outcomes, 15 studies reported 
infarct size, 24 reported he neurological deficit scores, including 
NSS, Purdy, mNSS, Zea-Longa and Rotrarod test. Detailed char-
acteristics of the included studies were listed in Table 1.

Methodological quality of included studies

Each risk of bias item of all articles was shown in Figure 2. 
None of the studies fulfilled all ten criteria for low risk of bias. Of 
the 27 included studies, 23 studies described the methods used 
to generate the allocation sequence, while 4 studies [36,37,44, 
47] lacked information about this process, and the risk of bias 
was judged to be “unclear risk” (a). Studies demonstrated simi-
lar baseline characteristics between the hUCB-MSCs group and 
control group (b). Because of the special properties of hUCB-
MSCs administration, it was difficult for researchers to achieve 
a blinding procedure when acquiring hUCB-MSCs, although this 
wasn’t influence the experimental results. The risk of bias was 
unclear for all articles across the domains of allocation conceal-
ment, random animal housing, and random outcome (c,d,e,g). 
In terms of randomization and blinding of outcome evaluation, 
4 studies [24,25,48] described that animals were not randomly 
selected to assess outcomes, defined as “high risk”. And the re-
maining studies were defined as “unclear risk” (f). Incomplete 
results data were adequately treated in almost all studies (h). 
Regarding the reporting of biases, no risk was identified in the 
selected studies (i). Other potential sources of bias weren’t 
identified in any of the articles (j).

Data analysis

Effects on the neurological deficit scores

The neurological deficit scores were measured in most stud-
ies included in our review. As shown in Figure 3, the MD was 
−1.57 (95% CI: −2.06, −1.08, P<0.00001), suggesting significant 
lower the neurological deficit scores in the hUCB-MSCs group 
compared to the control group. Because of the high heteroge-
neity (I2=92%, P<0.00001), we used the sensitivity analysis, and 
we did not find a reason for the high heterogeneity. Accord-

ing to the different of the neurological deficit scores items, the 
objects of study were classified into NSS (MD: −3.09, 95% CI: 
−5.19, −1.00, P=0.004), Purdy (MD: −0.76, 95% CI: −1.46, −0.06, 
P=0.03), mNSS (MD: −1.97, 95% CI:−2.72, −1.21, P<0.00001), 
Zea-longa (MD: −0.75, 95% CI: −0.96, −0.55, P<0.00001), and 
Rotrarod test (MD: 12.06, 95% CI: 8.37, 15.76, P<0.00001) (Fig-
ure 4).

Effects on infarct size

Compared to the control group, the infarct size was signifi-
cantly decreased in the hUCB-MSCs group as shown in Figure 5 
(MD: −2.82, 95% CI: −4.14, −1.49, P<0.0001).

Because of the high heterogeneity (I2 =98%, P<0.00001), we 
used the sensitivity analysis, and we didn’t find a reason for the 
high heterogeneity. According to the different animal species, 
the objects of study was classified into rodents (MD: −14.51, 
95% CI: −20.27, −8.75, P<0.00001), and non-rodents (MD: 
−0.08, 95% CI: −0.36, −0.21, P=0.60) (Figure 6).

Publication bias

In terms of the neurological deficit scores, we found no pub-
lication bias in the meta-analysis (Figure 7). In terms of infarct 
size, it likely affected by publication bias (Figure 8). One includ-
ed studies [48] mainly causes publication bias. We searched all 
published articles as thoroughly as possible, but publication 
bias was still unavoidable. After analysis, we found that the ob-
jects of this study were rodents, and subgroup analyses sug-
gested that animal species may be the source of heterogeneity. 
There was no special effect on infarct size for CI in animal model 
whether it was rodents or not, so it has no major impact on the 
research results of this article.

Discussion

Over the years, many epidemiological studies have been 
published on hUCB-MSCs therapy for CI in animal model. Labo-
ratory animals are widely used to evaluate the medication’s ef-
ficacy. The biological similarity to humans is one of the most 
important characteristics of laboratory animals such as mice 
and rats [49]. Thus, in most experimental CI studies, these ani-
mals are preferred. Our meta-analysis evaluated the efficacy 
and safety of hUCB-MSCs therapy for CI in animal model. The 
results indicated that hUC-MSCs treatment can promote func-
tional recovery and reduce infarction in animal model of CI. This 
will provide more possibilities for hUCB-MSCs therapy in pre-
clinical studies of CI.

At present, the exact mechanism of hUCB-MSCs therapy 
for CI in animal model remains unclear. It may be in the fol-
lowing ways: (1) Angiogenesis and vascular stabilization [17]: 
Treatment of CI in animals model with hUCB-MSCs increase the 
expression of endogenous angiogenic factors, enhance the pro-
liferation of vascular endothelial cells, and promote the regen-
eration of blood vessels in ischemic brain tissue [50]. Studies 
have found that hUCB-MSCs treatment increased expression of 
Angiopoietin-1, contribute to vascular remodeling in the isch-
emic brain which plays an important role in functional outcome 
after CI [39,51]. (2) Peripheral immune inflammatory response 
[40]: During cerebral ischemia, damaged cells and extracellular 
peroxiredoxin activate infiltrate macrophages, leading to the 
release of inflammatory cytokines such as interleukin (IL)-1. 
Therefore, injured brain cells and impregnated leukocytes pro-
duce various inflammatory cytokines and mediators that aggra-
vated post-ischemic inflammation and injury [52]. HUCB-MSCs 
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Table 1: Characteristics of included studies.

Study ID Animal model Dose, number; timing of 
transplantation

Transplantation 
route

Observation 
time of out-

comes

Primary 
outcomes

Research 
type

Xiaolan Chen 

[22] 2007
3 month old male 

SD rats
3×106/ml; single injection; 30 minutes 
after moding Tail vein 28 days Zea-longa; 

infarct size RCT

Lei Du [23] 2008 Healthy male SD 
rats

3×106/ml; single injection; 24 hours after 
MCAO Intracerebral 28 days mNSS RCT

Dicheng Zhao 

[24] 2012 Male SD rats 5×106/cells; single injection; 30 minutes 
after moding Tail vein 28 days Zea-longa; 

infarct size RCT

Ying Zeng [25] 
2013

Healthy adult 
male rats

3×106/ml; single injection; 24 hours after 
molding Tail vein 28 days mNSS RCT

Liping Shen [26] 
2013 Male SD rats NR; multiple injection; 24 hours after 

molding Intranasal 14 days mNSS RCT

Zhengzheng Wu 

[27] 2014 Male mouse 4×106/ml; single injection; 30 minutes 
after moding Tail vein 7 days NSS; infarct 

size RCT

Yao Zhu [28] 
2014

Healthy male 
rabbits

5×106/cells; single injection; immediately 
after moding Femoral vein 14days Purdy RCT

Pengdian Chen 

[29] 2014
Healthy adult 
male SD rats

1×106/μl; single injection; 24 hours after 
molding Intracerebral 28 days mNSS RCT

Min Pi [30] 2014 Adult male SD 
rats

1×105/μl; single injection; 2 days after 
molding Intracerebral 28 days mNSS RCT

Liang Hou [31] 
2016

Adult male SD 
rats

1×106/cells; single injection; 10 minutes 
after molding Tail vein 28 days mNSS RCT

Jingjing Zhou 

[32] 2016
Healthy male SD 

rats
1×106/cells; single injection; 10 minutes 
after molding Tail vein 14 days Purdy RCT

Haili Huang [33] 
2017

Healthy male 
rabbits

1 ×109 /m; single injection; 24 hours 
after molding Femoral vein 14 days NSS; infarct 

size RCT

Meng Li [34] 2019 Male SD rats 1×106/cells; single injection; 2 days after 
molding Tail vein 14 days mNSS; RCT

Songhe Yin [35] 

2023 Male SD rats 1×106/cells; single injection; 24 hours 
after molding Tail vein 7 days mNSS RCT

Mäkinen S [36] 
2006

Male Wistar rats 
(3–4 months)

1-5×107cells; single injection; 24 hours 
after MCAO Intravenous NR Infarct size NR

Chung DJ [37] 
2009 Ten adult beagles 1×106/ml; single injection; 1 day after 

moding Basilar artery 14 and 28 days Purdy; infarct 
size NR

Lim JY [38] 2011 Seventy-four 
adult male rats

1× 106, 5× 105, 1× 105cells; single injec-
tion; NR

Tail vein and 
intrathecal 28 days, Rotarod test; 

infarct size RCT

Guan YM [39] 

2014 Male rabbits 1×106/ml; single injection; several min-
utes after MCAO Femoral vein 14 days NSS; infarct 

size RCT

Tsuji M [40] 
2014

postnatal day 12 
male and female-

mouse pups

1× 105cell; single injection; 48 hours 
after stroke Femoral vein 6 and 7 weeks Rotarod test, 

infarct size RCT

Womble TA [41] 
2014

Adult male SD 
rats

1 × 10 6cells;singleinjection; 48 hours 
post-MCAO Penile vein NR Infarct size RCT

Zhao Q [42] 
2015 Adult male rats 1×104cells/cm2; multiple injection; 24 

hours after MCAO Intranasal 14 days mNSS; infarct 
size RCT

Cheng Q [43] 
2015

6–7-week-old 
male mice

4×106/ml; single injection; 30 minutes 
after moding Tail vein 7days NSS NR

Park HW [44] 
2015

Adult male SD 
rats

5×105cells;singleinjection; 48 hours after 
MCAO Intracerebral 28 and 30 days Rotarod test; 

infarct size NR

Park HW [45] 

2017
Adult male SD 

rats
5×105 cells; single and double; 2 and 9 
days after MCAO Intracranial 28 days Infarct size RCT

Nalamolu KR 
[46] 2019

Healthy adult 
male SD rats NR Tail vein 7 days mNSS RCT

Ramdan M [47] 

2021 Wistar male rats NR; 24 h after the MCAO Intracranial 24 hours mNSS; infarct 
size NR

Zhai QY [48] 2022 Adult male SD 
rats

1×106/ml; single injection; immediately 
after reperfusion Intra-arterial 7days mNSS; infarct 

size RCT

NSS: Neurological severity scores; RCT: Randomized controlled trial; mNSS: Modified neurological severity scores; SD: Sprague–Dawley; 
MCAO: Middle cerebral artery occlusion; NR: Not reported;
Follow-up (days) suggests the observation time of outcomes after mesenchymal stem cell administration
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Figure 1: Flow diagram for selection of studies.

Figure 2: The methodological quality of included studies.
Symbols used: :low risk;  : unclear risk;  : high risk

Figure 3: Forest plot comparing the neurological deficit scores in 
the hUCB-MSCs group compared to the control group.

Figure 4: Subgroup analysis comparing the neurological deficit 
scores in the hUCB-MSCs group. compared to the control group.

Figure 5: Forest plot comparing the infarct size in the hUCB-MSCs 
group compared to the control group.

Figure 6: Subgroup analysis comparing the infarct size in the hUCB-
MSCs group compared to the control group.
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Figure 7: Funnel plot (the neurological deficit scores).

Figure 8: Funnel plot (infarct size).

treatment can significantly reduce the increase of serum IL-1β, 
and IL-6 caused by cerebral ischemia, increase the content of 
anti-inflammatory cytokine in serum and focal ischemic brain 
tissue, and alleviate local immune inflammatory response [53, 
54]. (3) Inhibit apoptosis: When brain tissue is damaged, excit-
atory amino acids are secreted into extracellular fluid in large 
quantities, and free radical damage caused by oxidative stress 
persists. Animal studies [55] have confirmed that hUCB-MSCs 
transplanted into cerebral ischemia-reperfusion rabbits can sig-
nificantly reduce nerve cell death and significantly restore nerve 
function in cerebral tissue in focal ischemic area (4). Nutritional 
support mechanism: hUCB-MSCs release neurotrophic factors 
to support the survival of surviving cells in the ischemic pen-
umbra, repair synaptic function and promote angiogenesis [56].

Usually, animal studies are relevant to clinical application and 
used to evaluate the efficacy and safety of hUC-MSCs therapy. In 
Guan YM [41] study, no influence was found on complete blood 
counts, serum glucose, liver function or renal function in middle 
cerebral artery occlusion (MCAO) rabbits at 24 h and 2 weeks 
after transplantation, suggesting that intravenous infusion of 
hUCB-MSCs was safe for rabbits in the short-term. As far as we 
know, several clinical trials have been conducted to explore the 
potential benefits of hUCB-MSCs transplantation for CI patients 
[57,58]. A phase clinical trial [57] reported that an adult patient 
with hemiplegia due to ischemic stroke significantly improved 
within 12 months after receiving allogeneic hUCB-MSCs ther-
apy. Except for 1 case of hypothermia in treatment group, the 
transplanted route of up to 3×107 cells MSCs was safe in 100 
patients with CI. In the patient with a fever, the symptoms were 
quickly relieved after symptomatic treatment. Another clinical 
trial [58] indicated that 30 ml of hUCB-MSCs is injected once ev-
ery 5 days for a total of six times, which improved the symptoms 
of CI patients after 1 month. Even though in these clinical trials, 

hUCB-MSCs therapy is a generally safe and promising candi-
date to slow the disease progression. The success of hUC-MSCs 
therapy is partly reliant on the appropriate method and timing 
of hUCB-MSCs injection. Study [44] indicated that hUCB-MSCs 
by lumbar puncture intrathecal injection was an attractive and 
potentially successful method and may be a clinically feasible 
means of providing less invasive and repeatable transplantation 
therapy, but this method of injection was known to be more 
invasive than intra-arterial or intravenous methods, and there-
fore, clinical application seems to be implausible at this point. 
Intravenous infusion of cells is comparatively the least invasive 
approach [59]. Furthermore, beneficial effects of hUC-MSCs ad-
ministered within 72 hours after MCAO are clearly shown. The 
failure to induce sustained functional recovery, lesion size re-
duction, and limitation of glial scaring in animals treated 120 h 
following MCAO and thereafter indicates a time window of at 
least 72 h for efficient cell application [60]. Regardless of the 
type of donor, intra-parenchymal administration of hUCB-MSCs 
results in significant therapeutic effects in the ischemic brain 
[42]. However, the sample size of this subgroup analysis is small, 
and there may be false-positive or false-negative conclusions

We attempted to explore the heterogeneity from animal 
species, intervention details, follow-up visit, measured the cor-
relation with our primary outcomes, and so on. According to 
subgroup analysis, we found that the possible contributor of 
heterogeneity was the animal species and different scales of 
nerve deficit score. We haven’t found that the likely contribu-
tors to heterogeneity were the animal model, hUCB-MSCs type, 
hUCB-MSCs dose, and so on. Our study also had some advantag-
es. First, the inherent advantages of meta-analysis were seen. It 
overcame selective and potentially biased inclusion studies and 
weighing of studies results when explaining the evidence. This 
made the combined results even more reliable and convincing. 
Secondly, we performed a systematic literature search, com-
prehensive data collection, which can improve the accuracy of 
our findings. Finally, the main results about neurological deficit 
scores and infarct size could provide vital insight into the future 
study. It was of great significance for finding a new way to treat 
CI. However, the limitations of our study should be admitted. 
Firstly, due to the differences in the design, the results of the 
combined analysis may not be rigorous. Secondly, the included 
studies were limited to those that had been published. The out-
comes will be altered when undocumented data are published. 
As expected, studies reporting positive results were easier to 
publish, especially in animal studies. Finally, considerable het-
erogeneity remained in the studies evaluated in the subgroup 
analysis, because it is usually difficult to avoid heterogeneity. In 
addition, despite our efforts to avoid publication bias publica-
tion bias occurred, which needed to be considered when inter-
preting the study outcomes. 

Conclusion 

In conclusion, this meta-analysis evaluates the efficacy and 
safety of hUCB-MSCs therapy on the neurological deficit scores 
and infarct size in animal model, which provides an important 
basis for future translational clinical studies. However, con-
sidering the limited application of animal studies to humans, 
the heterogeneity existing between studies, the results should 
be extrapolated to the clinical setting with great caution. The 
long-term efficacy and safety of hUCB-MSCs in CI patients still 
require additional substantiation. In the future, large sample, 
andomized controlled trials are required to prove the efficacy 
and safety of hUCB-MSCs therapy for CI.
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