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Introduction

Artificial Intelligence (AI) is increasingly used to improve im-
age interpretation and analysis in medical imaging. Artificial 
rhythms can be trained to analyze medical images, leading to 
more efficient diagnosis and treatment of various diseases. AI 
has revolutionized the way medical professionals diagnose and 
treat diseases with its volume of rapid and accurate analysis of 

huge amounts of data [1]. Artificial intelligence has revolution-
ized the way medical professionals diagnose and treat diseases 
by using it to quickly and accurately analyze massive amounts 
of data. Machine Learning (ML), on the other hand, is a subset 
of AI that specifically focuses on machines’ ability to learn from 
data, enhance their performance through experience, and make 
predictions. Artificial intelligence refers to the all-encompassing 
ability of mathematical algorithms to train machines to mimic 
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human intelligence [2]. There are some AI and MI different ap-
plications in numerous industries [3,4]. Within the healthcare 
sector, there is a growing body of literature exploring ML-based 
algorithms and their potential clinical usefulness. With the use 
of programmed algorithms, machines can complete tasks, ex-
ecute decisions, and recognize images. Machine learning is a 
branch of artificial intelligence that is particularly useful in the 
interpretation of therapeutic medical imaging, as information 
from various sources can be used for a doctor to perform tests. 
Machine learning can use a variety of different approaches to 
analyze a greater quantity of information. It can be classified as 
supervised or unsupervised. These two techniques are applied 
in different situations [5,6].

Modern cardiovascular diagnostics heavily rely on non-
invasive imaging techniques, with cardiac Computed Tomog-
raphy (CT) being recognized as a primary option for assessing 
cardiovascular risk and evaluating stable and unstable patients. 
Among the various diagnostic tests available, Coronary CT An-
giography (CCTA) stands out with its exceptional sensitivity (95-
99%) in detecting Coronary Artery Disease (CAD), defined as a 
stenosis of 50% or more on invasive coronary angiography. Its 
specificity ranges from 64% to 83%. The clinical advantages of 
using CCTA to diagnose stable CAD and guide subsequent de-
cision-making have been demonstrated in two significant clini-
cal trials: PROMISE (Prospective Multicenter Imaging Study for 
Evaluation of Chest Pain) and SCOT-HEART (Scottish Computed 
Tomography of the HEART). These trials, along with recent na-
tional and international guidelines, have solidified CCTA as a 
preferred first-line diagnostic test [7].

The field of modern medicine is marked by the production 
of a considerable volume of data, including advanced imaging 
techniques [8]. As the amount of medical information contin-
ues to grow rapidly, healthcare professionals are embracing 
innovative technologies to analyze these vast amounts of data 
efficiently, all while prioritizing patient safety and welfare. The 
emergence of Artificial Intelligence (AI) in the medical field has 
instilled optimism that it can enhance health outcomes by com-
plementing human intelligence and optimizing the diagnostic 
and prognostic capabilities of current tests, thereby reducing 
the workload on physicians [9].

The aim of this review is to provide a comprehensive anal-
ysis of the applications of artificial imaging in cardiac CT, and 
its dual implications in clinical care and research and scientific 
discovery. Initially, we delve into the fundamental terms associ-
ated with AI such as ‘big data’, ‘Machine Learning’ (ML), ‘deep 
learning’, and ‘radionics’. Subsequently, we assess the current 
evidence, strengths, limitations, and prospects of AI in non-in-
vasive cardiovascular imaging, utilizing cardiac CT as a prime ex-
ample to highlight the numerous challenges and opportunities. 
Lastly, we propose a scientific framework to ensure the clinical 
and scientific validity of forthcoming studies in this innovative, 
yet immensely promising and captivating field.

Materials and methods

Echocardiography: Artificial intelligence can be successfully 
applied in echocardiography to address variance in image ac-
quisition and interpretation. In addition, artificial and machine 
intelligence can help in the diagnosis and management of car-
diac diseases. Determining Left Ventricular Ejection Fraction 

(LVEF) by Simpson’s rule (Biplane method of disk) can be ob-
tained using artificial intelligence in this software. This automa-
tion makes the results more repeatable and independent of the 
operator, which means more quality and accuracy in diagnosis 
[10].

Cardiac magnetic resonance: AI is used for optimizing many 
aspects of CMR [11], including chamber quantification and ven-
tricular function determination, perfusion and flow assessment, 
and tissue characterization. However, these algorithms are not 
fully automated, with an ongoing need for user input [12,14].

Enhanced accuracy and efficiency: In the future, AI may ex-
tend diagnostic value based on images alone or a combination 
of images and clinical images, thus providing informed diagno-
sis, prognosis, and decision-making [15,16]. Traditional meth-
ods of image interpretation often rely on human expertise, 
which can be subjective and prone to errors [17]. AI algorithms, 
on the other hand, can analyze medical images with incredible 
precision, detecting even the smallest abnormalities that might 
be missed by the human eye [18]. This not only leads to more 
accurate diagnoses but also enables early detection of diseases, 
potentially saving lives. There is also an opportunity to combine 
biomarker, genomics, proteomics, and metabolomics with im-
aging data to improve the predictive value of ML algorithms and 
create personalized healthcare for patients [19]. 

Myocardial Perfusion Imaging (MPI) with Electrocardiogram 
(ECG) SPECT is a useful imaging tool for diagnosing Coronary 
Artery Disease (CAD) and determining prognosis [20,23].

Artificial intelligence applications in cardiac and pacing im-
aging are growing. In the short term, the synthetic prosthesis 
has the potential to reduce human error and save time in the 
clinical workflow through automatic segmentation of cardiac 
structures [10,12]. 

With the addition of machine learning to supplement the 
MPI results, patient-specific risk stratification is improved. A 
study by Głowacki et al. found evidence that machine learn-
ing is greater than parametric statistical models in predicting 
the presence of obstructive CAD, the need for revasculariza-
tion, and potential adverse risks [24]. Specifically, Wang et al. 
conducted a study that evaluated the MPI device’s accuracy in 
predicting CAD and reversible perfusion deficit in training and 
validation cohorts. The results showed that Stress-only MPI 
with ML models can detect CAD [25]. Figure 1 shows Cardiac 
imaging modalities.

Cardiology and nuclear cardiometry use non-invasive tech-
niques to measure blood flow in the heart [13]. This test is es-
pecially useful when diagnosing coronary disease and possible 
ischemia or checking the heart due to reduced blood use. Deep 
learning allows for a greater ability to analyze images by iden-
tifying high-dimensional patterns [14,15]. In this article, we re-
view the advances of artificial intelligence’s effect on cardiovas-
cular imaging and highlight its potential to improve outcomes.
Figure 2 shows the effect of cardiovascular imaging by AI. 

Enhanced accuracy and efficiency: One of the primary ad-
vantages of AI in medical imaging is its ability to enhance ac-
curacy and efficiency in diagnosis. Traditional methods of image 
interpretation often rely on human expertise, which can be sub-
jective and prone to errors. AI algorithms, on the other hand, 
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Figure 1: Cardiac imaging modalities.

Figure 2: The effect of cardiovascular imaging by AI [26].

can analyze medical images with incredible precision, detecting 
even the smallest abnormalities that might be missed by the 
human eye. This not only leads to more accurate diagnoses but 
also enables early detection of diseases, potentially saving lives 
[21,22].

By leveraging machine learning algorithms, AI systems can 
analyze medical images with speed and precision, aiding in the 
identification of early-stage diseases that may be difficult to 
detect through traditional methods [23]. This early detection is 
crucial as it can lead to timely interventions, potentially saving 
lives and improving treatment outcomes [24]. 

One of the key advantages of AI in medical imaging is its abil-
ity to enhance the accuracy and efficiency of disease diagnosis 
[25].

Improved treatment planning: AI in medical imaging goes 
beyond diagnosis; it also plays a crucial role in treatment plan-
ning. By analyzing medical images, AI algorithms can provide 
valuable insights into disease progression, tumor growth, and 
response to treatment [27]. This information helps healthcare 
professionals develop personalized treatment plans, optimizing 
patient care and outcomes [28,29]. Additionally, AI can assist 
in surgical planning by providing 3D reconstructions and virtu-
al simulations, allowing surgeons to visualize and prepare for 
complex procedures [30].

Enhanced screening and early detection: Screening for dis-
eases like cancer often involves analyzing a large number of im-

ages, which can be time-consuming and resource-intensive. AI 
algorithms excel in this area by quickly and accurately analyzing 
vast amounts of data, enabling efficient screening processes. By 
detecting early signs of diseases, AI can significantly improve 
the chances of successful treatment and reduce healthcare 
costs associated with advanced-stage diagnoses [31].

For image segmentation or detection tasks, large numbers of 
experts must create training and validation data by labeling the 
images and annotating the structures of interest [32]. Research 
is needed on newer tools that reduce the annotation burden on 
human experts. For example, some algorithms can semiauto-
matically trace structures on images, so that a human annotator 
need only modify machine-generated traces, rather than gener-
ate each annotation de novo [33,34]. It is possible to train deep 
learning methods in a semi supervised manner with minimally 
annotated data sets to get reasonable approximations of struc-
tures, thereby iteratively reducing the human effort in tracing 
structures [35,36].

 Deep learning uses multiple layers to progressively extract 
higher level features from raw image input [37]. It helps to dis-
entangle the abstractions and picks out the features that can 
improve performance. The concept of deep learning was pro-
posed decades ago [38]. Only till recent decade, the application 
of deep learning became feasible due to enormous number of 
medical images being produced and advancements in the de-
velopment of hardware.
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Figure 3: Radiomic analysis of histological features includes changes in histological structure in a specif-
ic volume of interest. These changes give rise to distinct texture patterns, which can be quantified using 
higher-order features that represent the spatial arrangement of voxels and their attenuation in computed 
tomography. In contrast, histogram-based first-order features only provide information about the attenua-
tion distribution of the voxel. It is important to note that different tissue patterns, despite having the same 
number of voxels with similar attenuation, may show the same histograms and therefore show similar first-
order statistics [45].

Use of machine learning for efficient image annotation: For 
image segmentation or detection tasks, large numbers of ex-
perts must create training and validation data by labeling the 
images and annotating the structures of interest. Research is 
needed on newer tools that reduce the annotation burden on 
human experts. For example, some algorithms can semiauto-
matically trace structures on images, so that a human annotator 
need only modify machine-generated traces, rather than gener-
ate each annotation de novo [38]. It is possible to train deep 
learning methods in a semi supervised manner with minimally 
annotated data sets to get reasonable approximations of struc-
tures, thereby iteratively reducing the human effort in tracing 
structures [28].

Challenges and future directions: While AI in medical im-
aging holds immense promise, it also faces certain challenges 
[39]. Data privacy, regulatory compliance, and ethical consider-
ations are crucial aspects that need to be addressed to ensure 
the responsible and secure use of AI in healthcare. Additionally, 
ongoing research and development are necessary to refine AI 
algorithms, improve interpretability, and validate their perfor-
mance across diverse patient populations [28].

Cardiac magnetic resonance: AI is used for optimizing many 
aspects of CMR, including chamber quantification and ventricu-
lar function determination, perfusion and flow assessment and 
tissue characterization. However, these algorithms are not fully 
automated, with an ongoing need for user input [31].

Novel AI applications in CMR: Magnetic Resonance Finger-
printing (MRF) is a new technique that allows the quantifica-

tion of multiple tissue properties in a single scan. A recent study 
investigated the use of cardiac MRF (cMRF) for myocardial T1, 
T2 and Extracellular Volume (ECV) quantification in 9 patients 
with non-ischemic cardiomyopathy compared with traditional 
mapping methods [40]. Due to the potential of cMRF to over-
come variations in heart rate s and system properties, cMRF 
may achieve more reproducible T1 and T2 quantification, and 
therefore holds promise for application in cardiomyopathy pa-
tients [41].

Radiomics: A link between CT imaging and machine learning: 
Radiomics is the utilization of intricate mathematical formulas 
on a specific radiological image, such as a CT scan, to derive a 
multitude of characteristics [42]. These characteristics pertain 
to the shape, attenuation, and texture of a particular volume of 
interest [43]. Figure 3 illustrates this concept. Being an isotropic 
imaging technique comprised of overlaid numerical matrices, 
specifically Hounsfield Unit (HU) values, CT scans are highly suit-
able for the implementation of radiomic approaches [44].

Machine learning and radiomics in cardiovascular medicine 
from electrocardiogram to cardiac CT: To date, AI methods in 
the field of Cardiology have primarily concentrated on the inter-
pretation of Electrocardiogram (ECG) and echocardiogram re-
sults, Utilizing Deep Neural Networks (DNNs). These tests have 
provided researchers with a wealth of data to train their algo-
rithms [46]. DNNs have exhibited a high level of accuracy in di-
agnosing acute myocardial infarction (approximately 93% sen-
sitivity and 90% specificity), as well as classifying arrhythmias 
and electrical conduction abnormalities, comparable to the 
accuracy of trained cardiologists [47]. A recent groundbreak-
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Table 1: Supervised and unsupervised approaches to machine learning.

Supervised

Regression analysis [48,49] 
Uncomplicated form of supervised machine learning that generates an algorithm to describe a relationship between 
multiple variables and an outcome of interest. Stepwise models “automatically” add or remove variables based on the 
strength of their association with the outcome variable, until a significant model is developed or“learned.” 

Support vector machines [50,51]
While regression analysis may identify linear associations, "support vector machines" provide non-linear models by 
defining "planes" at the highest point that best assign features to groups that produce certain outcomes. They provide, 
gives. They predict, distinguish.

Random forests [52] Identify the best cut point values in different features of individual groups of related data to be able to separate them 
out to predict a particular outcome.

Neural networks [53] The features are fed through a node network of decision points, which is meant to mimic human brain processing.

Convoluted neural networks [54] A multilayered network, often applied to image processing, simulating some of the properties of the human visual 
cortex. A mathematical model is used to transfer the results to successive layers.

Deep Learning (DL) [55] DL is defined as a class of neural network algorithms where more internal layers are used than traditional neural net-
works ("deep" simply describes a layer separation). The title is described as Convolutional Neural Networks.

Unsupervised

Principal component analysis [56] Simple form of unsupervised learning in which the features that account for the most variation in a dataset can be 
identified.

Hierarchical clustering [55,56]

It creates a hierarchical decomposition of the data based on similarity with another cluster by aggregating them (an 
agglomerative approach) or dividing them as it moves down in hierarchy (a divisive approach). Strengths - Easy to un-
derstand and visualize using dendrograms, insensitive to outliers. Answer - metric measures and arbitrary linkage do not 
work with missing data, may lead to misinterpretation of dendrogram, difficulty in finding optimal solution.

Partitioning algorithms [57]

A form of cluster analysis that determines the degree of separation of different features in a data set and tries to find 
groups in which features are most differentiated. It does this by defining similarity based on proximity to the center  of 
the cluster. The algorithm modulates the data to build clusters with repeated value of the distance from the center. 
Strengths - Simple and easy to implement, easy to interpret, fast and efficient. Despite being performed and interpreted, 
it is at heart and relatively unused. Variables - uniform cluster size, may weaken with different cluster densities, sensitive 
to outliers.

Model-based clustering [58] 
This clustering algorithm makes a general assumption that each cluster generates a probabilistic (mostly Gaussian) 
model. Strengths - a description for the components, which is possible to evaluate clusters within clusters, number of 
clusters. Computationally intensive problems may converge slowly.

Grid-based algorithms [59]
Strengths—can work on large multidimensional space, reduction in computational complexity, data space partitioned to 
finite cells to form grid structure. Difficulties—difficult to handle irregular data distributions; limited by predefined cell 
sizes, borders, and density threshold; difficult to cluster high-dimensional data.

Density-based spatial clustering 
of applications with noise [60] 

Strengths - does not require cluster counts, can find arbitrary problems that are robust to outliers. Decisions - not defini-
tive, quality varies by size, cannot tolerate large differences in density.

Figure 4: The proposed pattern [66].

ing study showcased the power of big data and AI by analyzing 
a large cohort of 180,922 patients with 649,931 normal sinus 
rhythm ECGs. The study demonstrated that a CNN algorithm 
could reliably detect the presence of atrial fibrillation, with an 
Area Under the Curve (AUC) of 0.87 (95% confidence interval 
0.86-0.88). However, as cardiac CT scans have become increas-
ingly popular for non-invasive assessment of Coronary Artery 
Disease (CAD), the focus of AI research has expanded to include 
the analysis and interpretation of these scans [45].

Coronary plaque phenotyping: While the identification of 
coronary plaques and their hemodynamic importance depends 
on a machine learning approach that combines various metrics 
derived from CCTA, a more thorough evaluation of the plaque 
microenvironment, histology, and overall biology necessitates a 
more detailed radiomic analysis of its phenotype [61].

These high-risk plaque characteristics provide personalized 
insights into the vascular biology of each plaque. For example, 
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the remodeling of the vascular wall in atherosclerosis is the 
result of complex pathways that lead to cell migration and re-
modeling of the extracellular matrix. This is often caused by an 
imbalance in the expression and activity of matrix metallopro-
teinases and their inhibitors in the plaque’s microenvironment 
[62]. The resulting outward remodeling of the blood vessels can 
be detected on CCTA as an increase in vascular diameter around 
the plaque, which is captured by the remodeling index. On the 
other hand, low-attenuation plaque is associated with a lipid-
rich necrotic core, which is an extracellular mass in the intima 
caused by the necrosis and apoptosis of lipid-laden macrophage 
foam cells. This high-risk plaque phenotype, characterized by a 
thin fibrotic cap above a necrotic core, is often referred to as 
a ‘Napkin-Ring Sign’ (NRS) on CCTA [63]. It appears as a low-
attenuation area surrounded by a high-attenuation rim. Lastly, 
spotty calcification indicates inflamed areas of continuous coro-
nary calcification and microcalcification. Vascular calcification 
is a localized response to an inflammatory microenvironment, 
with a clear connection between the infiltration of inflamma-
tory cells and osteoblastic metaplasia [64].

Radiomic phenotyping of a specific plaque has the potential 
to identify high-risk plaque characteristics, such as changes in 
the attenuation histogram and radiomic texture. This approach 
aims to standardize a process that is often subjective and de-
pendent on the operator. In a study conducted by Kolossvary 
et al., 30 non-ruptured plaque lesions (NRS) and 30 non-NRS 
plaques with similar levels of calcification, luminal obstruction, 
localization, and imaging parameters were analyzed. The results 
showed that 916 radiomic features were significantly different 
between the two groups, with 418 of these features achieving 
an Area Under the Curve (AUC) of greater than 0.80. Notably, 
texture-shape statistics, such as short- and long-run low grey-
level emphasis, exhibited the highest AUC values of 0.918 and 
0.894, respectively. In contrast, none of the conventional met-
rics derived from Coronary Computed Tomography Angiography 
(CCTA) were able to discriminate between the two groups [65]. 

Furthermore, a more recent analysis involving 44 plaques 
from 25 patients who underwent multimodality imaging dem-
onstrated that radiomic parameters derived from CCTA outper-
formed conventional metrics in identifying specific plaque char-
acteristics. These included intravascular ultrasound-defined 
attenuated plaques, optical coherence tomography-detected 
thin-cap fibroatheroma, and 18F-sodium fluoride (18F-NaF) 
positivity on Positron Emission Tomography (PET), which serves 
as a marker for microcalcification and coronary inflammation. 

Lastly, in an ex vivo analysis of 445 cross-sections taken from 
21 coronary arteries of seven male hearts, a radiomics-based 
machine learning model was found to be superior to visual as-
sessment, low attenuation, and mean Hounsfield Units (HU) in 
identifying advanced atheromatous lesions. Finally, in an analy-
sis of 445 cross-sections taken from 21 coronary arteries from 
seven male hearts imaged in vitro, a radiomics-based ML model 
was found to be superior to visual evaluation (AUC=0.73 vs. 
0.65; P=0.04), low attenuation (AUC=0.55; P=0.01), and mean 
HU (AUC=0.53; P=0.004) in the identification of advanced ath-
eromatous lesions [66,67]. Coronary lesions can be phenotypi-
cally characterized through radiomics. Variations in the com-
position of coronary bridges are reflected in distinct radiomic 
tissue patterns observed during computed tomography analy-
sis. These patterns can be quantified using first and higher order 
radiomic features. By analyzing and analyzing changes in these 
features, an automated feature can not only identify plaque, 

but also provide a comprehensive understanding of the histol-
ogy and biology associated with a specific lesion [66]. Figure 6 
shows the process. 

AI methods in cardiovascular imaging: Two distinct applica-
tions of artificial intelligence in cardiac imaging have been re-
ported. Classical ML methods have been used with many clini-
cal image features and/or predicted predictions to distinguish 
outcomes or prognoses from large datasets. More advanced 
AI methods, such as DL methods, are used on real images for 
manual recognition [68]. Conventional AI methods, DL, do not 
require engineering (i.e., computation and customized imaging 
transformation features), but instead directly interrogate im-
ages for image segmentation or outcome prediction tasks. DL is 
particularly well-suited for large and highly characterized datas-
ets – for example, genomic and imaging datasets [69].

Similar to the way humans learn, AI algorithms need training 
examples to perform a task confidently. This is a more general 
formalization of artificial intelligence, which defines intelligent 
algorithms as algorithms that increase their performance on a 
specific task as they gain experience [70] (Figure 5). 

Fully automated diagnosis: While most of the current ap-
plications of ML are on cardiac imaging surfaces and image 
segmentation or some of the methods are used, there are also 
researches and disease classification and diagnosis based on 
ML. Ultimately, the physician’s final clinical diagnosis usually re-
quires considering additional clinical in-formation such as age, 
patient history [71]. 

Figure 5: Conceptual framework.

ML methods can potentially provide a rapid and precise 
computation of post-imaging disease or outcome probability, 
based on the integration of imaging and clinical variables. This 
approach was demonstrated in several recent studies, partic-
ularly in SPECT MPI, where the level of automation for image 
analysis is high compared to other modalities [72]. The AUC for 
revascularization prediction by ML was similar to that for the 
visual scores of one reader and superior to that of the other 
reader (Figure 6) [66,68].

Discussion

In the current era of advancing digitalization and the accu-
mulation of extensive medical data and images, Artificial In-
telligence (AI) and Machine Learning (ML) present innovative 
solutions to long-standing challenges in disease diagnosis and 
risk prediction. Simultaneous progress in the field of radiomics 
now allows mapping from CT scans of normal hearts, and many 
features can be developed that can introduce ML algorithms to 
increase the accuracy of heart disease diagnosis and risk assess-
ment. These breakthroughs have the potential to revolutionize 
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Figure 6: The ROC Curves Comparing the ML Algorithm Versus 
Ischemic TPD and Expert Visual SDS for Predicting Revasculariza-
tion [60].

the landscape of healthcare by relieving clinicians of image pro-
cessing and diagnostic and prognostic measurements. This, in 
turn, can lead to significant clinical and health economic advan-
tages. Although still in its early stages, AI-based cardiovascular 
imaging holds great promise for both patients and healthcare 
providers, as it facilitates the transition towards a more per-
sonalized model of care. Computed tomography radiomics has 
emerged as a promising approach in precision medicine. In this 
proposed workflow, machine learning-powered radiomic anal-
ysis of cardiac computed tomography scans is integrated into 
clinical practice. By leveraging radiomic analysis, the time re-
quired for analysis can be significantly reduced. Furthermore, 

Algorithm Type Basic description

K-means clustering [68] Unsupervised A set of k centroids is generated to establish clusters of data, with each data point being assigned to 
the centroid that is closest to it.

Hierarchical clustering [73] Unsupervised
A hierarchical structure of clusters is constructed by merging the clusters that are closest to each other. 
Subsequently, the distances between the clusters are recalculated, leading to the eventual creation of a 
tree or dendrogram representing the clusters.

Principal component analysis [74] Unsupervised
Principal Component Analysis (PCA) is a technique used for dimensionality reduction, which aims to 
enhance data compressibility by reducing the number of data points or dimensions. The primary objec-
tive of PCA is to simplify the complexity of the data while preserving its underlying structure.

Singular value decomposition [75] Unsupervised A framework that enables the decomposition of a large data matrix into a multiplication of smaller 
matrices.

Naïve Bayes theorem [76] Supervised The assumption of independence among predictors is made by a straightforward and effective algo-
rithm.

K-nearest neighbors [77] Supervised All existing cases are stored and new cases are allocated based on a similarity metric.

Support vector machine [78] Supervised A new instance classifier that is characterized by a dividing hyperplane that classifies novel samples.

Random forest [76] Supervised
The ensemble is comprised of numerous decision trees, functioning collectively. Each tree offers a 
class prediction, and the prediction that receives the highest number of votes is considered as the final 
prediction of the overall model.

Extreme gradient boosting [79] Supervised

An ensemble technique is employed to construct a robust model by utilizing multiple weaker models, 
which are represented as short decision trees. To predict the residual values between the actual values 
and the robust model, a novel weak model is generated. These weak models are subsequently incorpo-
rated into the overall robust model in an iterative manner.

Decision tree [79] Supervised

The tree will divide into branches or edges based on certain conditions or internal nodes. The branches 
that do not further divide are the decisions or leaves of the tree, which indicate the predicted out-
come. Recursive binary splitting is a technique used to determine how the data is divided, and it relies 
on a cost function to identify the splits that result in the least accuracy loss for the model.

Auto MAPSE [80] Supervised

AutoMAPSE was more precise than manual measurements if it averaged more heartbeats. AutoMAPSE 
had acceptable trending ability (concordance rate 81%) during hemodynamic alterations. In conclu-
sion, autoMAPSE is feasible as an automatic tool for rapid and quantitative assessment of LV function, 
indicating its potential for hemodynamic monitoring.

SVM‐based method [81]  Supervised
Artificial intelligence has the potential to detect RHD as accurately as expert cardiologists and to im-
prove with more data. These innovative approaches hold promise to scale echocardiography screening 
for RHD.

when combined with electronic health records, automated 
recommendations can be generated for physicians, aiding in di-
agnosis and patient prognosis. This integration of artificial and 
human intelligence allows physicians to make informed deci-
sions and select the most suitable management plan based on 
comprehensive data.

Results

Overview of select ML algorithms: There exist 2 primary cat-
egories of machine learning algorithms, as illustrated in Table 2. 
The first category is supervised learning, which pertains to sce-
narios where both inputs and known outputs are available. The 
primary objective of these algorithms is to accurately establish 
a mapping between the inputs and outputs. Within supervised 
learning, regression algorithms are employed when dealing 
with continuous outputs, while classification algorithms are uti-
lized for non-continuous or categorical outputs. On the other 
hand, unsupervised learning involves situations where labeled 
outputs are absent. The main purpose of unsupervised learning 
algorithms is to uncover and comprehend the underlying struc-
ture of the data itself.

The use of artificial intelligence in cardiac imaging and study 
has increased [80,98,99]. Brown et al. did research on using of 
artificial intelligence for rheumatic heart disease detection by 
Echocardiography. They concluded that artificial intelligence 
has the potential to detect RHD as accurately as expert cardi-
ologists and to improve with more data [81]. Föllmer et al. have 
investigated the use of artificial intelligence for imaging of vul-

Table 2: Examples of machine learning algorithms.
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nerable atherosclerotic plaque in coronary arteries. They have 
reviewed the available evidence on the use of Artificial Intelli-
gence in non-invasive and invasive coronary imaging [82].

Conclusion

Artificial intelligence has transformed the field of medical 
imaging, offering unprecedented accuracy, efficiency, and in-
sights. From improving diagnosis and treatment planning to en-
hancing screening and early detection, AI has the potential to 
revolutionize healthcare. As technology continues to advance, 
it is crucial for healthcare professionals, policymakers, and re-
searchers to collaborate and harness the power of AI to improve 
patient outcomes and shape the future of medical imaging.

There has been a rapid recent increase in the application of 
AI, ML and DL approaches in multimodality CVI. While AI and 
EHRs may hold the promise to bring a personalized approach 
to treatment of CV conditions in the future, the current practic-
ing cardiologists need to be fully aware of the strengths and 
limitations of the current applications of AI. More multi-center 
studies are required to demonstrate that AI-based approach-
es are indeed superior to current conventional diagnostic and 
treatment pathways. More multi -center data are also required 
to increase the generalizability and applicability of these ap-
proaches.

Although there is an expanding body of literature on AI and 
ML in cardiovascular medicine, the future these fields will have 
in clinical practice remains to be paved. In particular, there is a 
promising role in providing automated imaging interpretation, 
automated data extraction and quality control, and clinical risk 
prediction, although these techniques require further refine-
ment and evaluation.
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