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Introduction

Symmetry is an intrinsic property found in many natural 
and engineered structures. Symmetrical objects are not only 
aesthetically pleasing but also often the most optimal design 
choice for a structure. This is because asymmetry can introduce 
uneven loads or stresses [1]. As a result, symmetrical structures 
are widely used in various fields such as bridges, buildings, rail-
ways, and medical rehabilitation equipment. However, these 
structures are prone to unpredictable structural failures due to 
the different external loads they experience during their ser-
vice life. Therefore, it is crucial to employ appropriate damage 
detection methods [2-4] to assess the structural health and en-
sure its safety. One popular non-destructive method for struc-
tural health detection is the combination of structural dynam-
ics and neural networks based on finite element models [5]. 

Current research in the field focuses on two main aspects. The 
first aspect involves the utilization of different neural network 
models or the optimization of basic neural network models to 
compare their effectiveness in damage recognition. Wu et al. 
applied Back-Propagation (BP) neural network technology to 
identify the location of a simple three-layer frame and assess 
the degree of damage to individual components [6]. Similarly, 
Szewczyk and Hajela developed an improved BP neural network 
method for the inverse mapping between the stiffness of indi-
vidual structural elements and global static displacements un-
der test loads [7]. In another study, Elkordy et al. employed a 
BP neural network to identify a five-story building, with training 
samples obtained from a finite element model [8]. Chen et al. 
established a finite element model of the motor housing, com-
pared the analysis results with experimental data, verified the 

Abstract

Symmetric structures are commonly used in various fields. To en-
sure the safety of these structures, it is crucial to employ appropriate 
damage detection methods. Among the methods used for structural 
health detection, the combination of structural dynamics and neural 
networks based on finite element models has gained popularity due 
to its non-destructive nature. This study presents a neural network-
based damage detection approach for symmetrical structures, taking 
into account the similarity of modal features. By considering the inter-
ference of modal feature similarity, the proposed method effectively 
detects damage in symmetrical structures. In this approach, the rates 
of mode shape change before and after damage are used as inputs to 
the neural network, as they are found to be less sensitive to modeling 
errors compared to the mode shapes themselves. The effectiveness 
and adaptability of the method are validated through a numerical case 
analysis of a symmetrical load-bearing base plate used in walkers for 
patients with spinal cord injuries.

Keywords: Symmetry; Neural network; Damage detection; Finite 
element model; Modal features.

Renling Zou1*; Jiaqing Wang1; Chunge Qu1; Hongwei Tan1; Xuezhi Yin2; Xiufang Hu1

1University of Shanghai for Science and Technology, Shanghai, China.
2Shanghai Berry Electronic Technology Co., Ltd., Shanghai, China.



www.jcimcr.org                Page 2

Citation: Zou R, Wang J, Qu C, Tan H, Yin X, et al. Neural networks-based damage detection for symmetrical structures con-
sidering modal feature similarity. J Clin Images Med Case Rep. 2024; 5(4): 3000.

reliability of the finite element model, and proposed the use 
of genetic algorithms to optimize the neural network model 
[9]. Their findings demonstrated that the GA-BPNN model ef-
fectively predicts vibration characteristic signals derived from 
finite element models. Another approach explored by Teng et 
al. involved the use of a Convolutional Neural Network (CNN) 
to extract damage features of steel frame structures [10]. Their 
results indicated that the CNN neural network successfully de-
tects both single and multiple damages in structures. Moreover, 
in 2020, Mousavi et al. introduced a Deep Convolutional Neural 
Network (DCNN) capable of learning features from original fre-
quency data [11]. Additionally, Atha and Jahanshahi employed 
CNN to mitigate the interference of prior knowledge and human 
factors in metal surface corrosion damage assessment [12]. The 
second aspect focuses on changing the dynamic features of the 
neural network input to compare the effects of damage iden-
tification using different dynamic features such as natural fre-
quency, mode shape, and other parameters. Researchers, like 
Guo et al., studied 6 marine jacket platforms and used the first-
order mode shape and natural frequency as inputs to the neural 
network [13]. After training, the neural network achieved a pre-
diction error of less than 8%. In the case of reinforced concrete 
beams, Bagheri et al. employed four identification methods 
based on frequency changes of modal parameters, Modal As-
surance Criterion (MAC), Coordinate Modal Assurance Criterion 
(COMAC), and modal curvature [14]. They found that the modal 
curvature method most effectively describes beam damage.

Existing research has utilized structural symmetry to address 
various issues in damage identification [15-17]. In a similar 
vein, this paper proposes a neural networks-based approach 
for damage detection in symmetrical structures, taking into ac-
count the similarity of modal features. When conducting health 
checks on symmetrical structures, it is important to fully exploit 
their symmetry and focus on the modal feature similarity of 
their symmetric parts. This approach offers several advantages 
that are significant for the advancement of damage detection 
in symmetrical structures: (1) It is suitable for components with 
symmetry and has minimal impact on boundary conditions; (2) 
Considering symmetry can enhance the accuracy of damage 
detection, which is an important feature in many engineering 
structures; (3) This method simplifies the calculation scale and 
time as it only requires considering the symmetrical part of the 
component.

Methodology

Damage sensitive features

Efficient neural network-based damage detection using 
modal parameters requires careful selection of input data that 
is less susceptible to finite element model errors. This is crucial 
as the neural network’s training patterns are derived from the 
finite element model. Inaccurate modeling can hinder accurate 
damage estimation if the modeling errors outweigh the modal 
sensitivity to damage. Lee et al. utilized natural frequencies 
and mode shapes as inputs for their neural network [18]. While 
natural frequencies provide more precise measurements, they 
are highly sensitive to environmental factors such as tempera-
ture. On the other hand, mode shapes are less affected by these 
environmental effects [19,20]. In real structures, the impact of 
temperature on natural frequencies can be greater than the ef-
fect of damage, posing challenges for damage detection.

This study explores the modal sensitivity based on the modal 
perturbation equation. The characteristic equation before and 
after structural damage without considering modeling errors is:

Where K is the stiffness matrix, M is the mass matrix, λ is the 
square of the natural frequency, φ is the mode shape.

The subscripts u and d represent the intact and damaged 
conditions respectively. We assume that the mass change be-
fore and after structural damage is ignored and consider the 
structural modeling error. The characteristic equation related to 
the damage stiffness change ΔKd is: 

Where ^ represents the quantity related to the modeling er-
ror ΔK.

Assuming a small damage ΔKd and a small damage modeling 
error ΔK, Δλ ̂ and Δλ ̂_d represent the changes in λ under the 
same damage ΔKd for two finite element models, one without 
model error and one with model error. It can be approximated 
that ΔKd = Δλ ̂d. In damage sensitive feature validation, a numeri-
cal verification of an example structure is provided. Addition-
ally, the following formula is derived: 

The solution yields two situations: 

The Eq. (4) demonstrates that the modal shape changes 
caused by the same damage are identical in models with and 
without modeling errors. This suggests that the sensitivity of 
modal shape changes to modeling errors is lower compared to 
the modal shape itself. Eq. (5) reveals that the discrepancy in 
modal shape changes caused by the same damage in the model 
without modeling error is directly proportional to the mode 
shape in the model without modeling error. To investigate the 
existence of the non-zero proportionality constant α, both sides 
of Eq. (5) are multiplied by [φ_u] ^ T, resulting in the following 
equation: 

Normalizing the mode shapes gives the following approxi-
mate relationship: 

The solution results indicate that Eq. (4) is the unique solu-
tion to Eq. (3). Assuming a small modeling error ΔK, the mode 
shape change rate before and after damage can be derived 
from the following approximate relationship based on Eq. (4): 

The rate of change of mode shape is less affected by model-
ing errors compared to the mode shape itself. Thus, the mode 
shape change rate is considered as the damage sensitive feature 
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and used as input for damage detection in the neural network.

Data extraction preprocessing

This study focuses on analyzing the symmetrical load-bear-
ing base plate of a walking aid used by patients with Spinal 
Cord Injuries (SCI). The load-bearing base plate model is loaded 
into the MODAL module of ANSYS and divided into 16 modules 
based on the smallest symmetrical part, as depicted in Figure 
1. Material values are assigned to different regions, and the 
degree of damage is simulated by adjusting the loss value of 
Young’s modulus E. To analyze the modal behavior, the modal 
expansion number is set to 6th order for each damage condi-
tion. The load-bearing base plate is divided into meshes, and 
boundary conditions are added based on the actual connection 
conditions of the base plate. Modal vibration shapes are then 
obtained through calculations. The 6th-order mode shape of 
each damage condition is processed to determine the change 
rate. This change rate is normalized and used as the input data 
for the neural network. 

Figure 1: Regional division of finite element model of symmetrical 
load-bearing plate

Neural networks for damage detection

In this study, a standard BP neural network was utilized for 
damage detection. The basic structure of its neurons is illus-
trated in Figure 2. The network comprises an input layer, a hid-
den layer, and an output layer, and the neuron layers are shown 
schematically in Figure 3. 

Figure 2: Schematic diagram of the basic structure of a neuron.

The rectified linear unit (Relu) activation function is used in 
the hidden layer and output layer. Its function is defined by Eq. 
4, and the derivative of y with respect to x is given by Eq. 5.

In order to improve the performance of the fully connected 
layer, a Softmax layer is added. The function of the Softmax lay-
er is defined as follows: 

Figure 3: Schematic diagram of neuron layers.

Where ai  represents the input signal and n is the number of 
neurons in the output layer.

Additionally, the Dropout method is employed to prevent 
overfitting. Furthermore, the ADAM gradient optimization algo-
rithm is utilized to find the optimal parameters.

Damage detection overall plan

In this study, a model of a symmetrical load-bearing bot-
tom plate for patients with SCI was used. The study aimed to 
explore the influence of modal feature similarity on symmetri-
cal structures using a combination of structural dynamics and 
neural networks based on finite element models. The first step 
was to determine the damage sensitivity features and use the 
modal shape change rate as the input for the neural network, 
considering its higher sensitivity to damage compared to mod-
eling error. The neural network model was then determined, 
with the BP neural network selected as the research tool for 
dynamic damage intelligent detection due to its popularity 
and evolution. The network consisted of an input layer, a hid-
den layer, and an output layer, with the Relu activation func-
tion used for the hidden and output layers. A Softmax layer was 
added after the fully connected layer, and the Dropout method 
was employed to suppress overfitting. The ADAM optimiza-
tion algorithm was utilized to find the optimal parameters. The 
damage detection data was obtained from the finite element 
model. The symmetric load-bearing plate structure model was 
divided into 16 areas, and damage was simulated by changing 
the Young’s modulus of each area. The Young’s modulus loss 
value in each area ranged from 5% to 50% in steps of 5%, result-
ing in a total of 160*6 data samples for analysis of the first 6 
mode shapes under each damage scenario. The acquired data 
were processed to obtain the modal shape change rate, which 
was then normalized and used as input for the neural network. 
The neural network learned to identify and classify injuries. 
The overall plan for damage detection of the load-bearing base 
plate structure is shown in Figure 4.
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Figure 4: Overall scheme of structural damage detection.

Table 1: Injury scene simulation of symmetrical load-bearing boards of walkers in patients with spinal cord injury.

Element regions

A B C D E F G H I J K L M N O P

Case1+ — — — — — 10% — — — — — — — — — —

Case2 — — — — — — — — — 15% — — — — — —

Case3 — 10% — — — — — — — — — — — — 15% —

Case4 — — — — 15% 10% — — — — — — — — — —

Case5 10% — — — — — — 15% — — — — 10% — — —

Case6 — — 10% — — — — — 15% — — — — 15% — —

+Case1: damage scenarios for 1th mode.

Figure 5: Numerical sensitive feature verification .
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Numerical verification

Damage sensitive feature validation

To simulate the modeling error, the Young’s modulus of the 
model was altered, and finite element models were created 
with no error, 5% error, and 10% error. Figure 1 illustrates the 
division of the load-bearing plate into 16 regions, where the 
Young’s modulus of each region was adjusted to simulate the six 
damage scenarios mentioned in Table 1. The analysis provides 
the rate of change in the first six mode shapes of the finite ele-
ment model under the six damage scenarios, considering both 
the presence and absence of modeling errors.

The results indicate that the rate of change in mode shape 
for the finite element model, both with and without modeling 
errors caused by structural damage, is nearly identical. This is 
depicted in Figure 5. Among the six damage cases analyzed, 
the average difference in mode shape change rate between the 
models with and without modeling errors is less than 0.58%.

Both theoretical and numerical simulation analyses have 
demonstrated that in the modal analysis of the finite element 
model, the sensitivity of the rate of change of mode shape to 
damage is higher than that to modeling error. Consequently, 
utilizing the modal shape change rate damage detection index 
as input for the neural network can mitigate the influence of 
modeling errors in the finite element model on the results of 
structural damage detection.

Symmetric structure modal similarity verification

Simulation case one

In the Case one, the training data is divided into two cases 
based on the modal feature similarity of symmetric structures. 
The selected area data in Method one contains geometric sym-
metry, while the selected area data in Method two does not 
contain geometric symmetry. 

Method one: Figure 6(a) shows that the damage of the left 
half of the A, B, C, and D areas is set to label 0, and the damage 
of the E, F, G, and H areas is set to label 1. Similarly, the damage 
in the right half of the I, J, K, L regions is set to label 2, and the 
damage in the M, N, O, P regions is set to label 3. The training 
set is created by applying 60% of the 5%-50% damage modal-
ity parameters to all regions of A-P, while the remaining 40% is 
used as the testing set. The Young’s modulus loss is varied from 
5% to 50% in 5% steps for the 16 zones of the symmetrical load-
bearing plate.

Method two: Figure 6(b) illustrates that the A-H region data 
of the left half of the geometric symmetry structure is selected 
as the training set. In this case, the damage of regions A and B is 
set as label 0, and the damage of regions C and D is set as label 
1. Similarly, the damage in areas E and F is set as label 2, and the 
damage in areas G and H is set as label 3. On the other hand, the 
I-P data of the right half of the geometric symmetry structure is 
used as the test set. Here, the damage of regions I and J is set 
as label 0, the damage of regions K and L is set as label 1, the 
damage of regions M and N is set as label 2, and the damage of 
regions O and P is set as label 3.

The performance of Case one is evaluated using metrics such 
as Accuracy, Precision, Recall, F1 score, and Cohens kappa. The 
evaluation scores for Method one are as follows: Macro-accura-
cy 90%, Macro-F1 78.3%, and kappa 69.2%, as shown in Table 2. 
Similarly, the evaluation scores for Method Two are as follows: 

Figure 6: Method one and two damaged area label assignment for 
simulation case one.

Macro-accuracy 99.5%, Macro-F1 98.9%, and kappa 97.2%, as 
shown in Table 3. 

Table 2: Performance evaluation parameters of Method one for 
Simulation case one.

Label 0 Label 1 Label 2 Label 3

Micro-accuracy 0.9 0.8 0.9 1

Precision 0.8 0.67 0.71 1

Recall 0.8 0.4 1 1

Micro-F1 0.8 0.5 0.83 1

Macro-accuracy 0.9

Macro-F1 0.783

kappa 0.692

Table 3: Performance evaluation parameters of Method two for 
Simulation case one.

Label 0 Label 1 Label 2 Label 3

Micro-accuracy 0.99 0.99 1 1

Precision 0.96 1 1 1

Recall 1 0.96 1 1

Micro-F1 0.9796 0.9796 1 1

Macro-accuracy 0.995

Macro-F1 0.989

kappa 0.972

Analysis of the performance evaluation results reveals that 
Method two achieves significantly higher Macro-accuracy, 
Macro-F1, and kappa compared to Method one. Figure 7(a)-(b) 
illustrates the confusion matrix and accuracy of the classifica-
tion results for Method one, while Figure 7c,7d illustrates the 
confusion matrix and accuracy of the classification results for 
Method two. In Method one, the classification accuracy for la-
bel 2 and label 3 is 100% each, followed by label 0 with 80%, 
and label 1 with the lowest classification accuracy of 40%. On 
the other hand, in Method two, the classification accuracy for 
labels 0, 2, and 3 is 100%, with only label 1 having a relatively 
lower classification accuracy of 96%. Evidently, Method one ex-
periences misclassification due to the interference of similarity 
in modal features of symmetric structures. In contrast, Method 
two significantly improves the classification accuracy by exclud-
ing the interference of modal feature similarity in symmetric 
structures. Method two achieves this improvement by using the 
damage data from the left half of the symmetric structure as 
the training set and the damage data from the right half of the 



www.jcimcr.org                Page 6

symmetric structure as the test set, unlike Method one which 
uses 60% of the global damage data as the training set and 40% 
as the test set.

Figure 7: Confusion matrix and accuracy for Simulation case one.

Simulation case two

In the Case two, based on the analysis results of Numerical 
case one, the damage data of base plates C, D, E, and F with 
low recognition rates were selected for local damage recogni-
tion. The training data is divided into two cases to consider the 
modal feature similarity of similar structures.

Method one, the area data selected does not merge geomet-
rically similar parts, as shown in Figure 8a. Areas C, D, E, and F 
of the symmetrical load-bearing plate are chosen for damage 
data, with assigned values of 0, 1, 3, and 2 respectively. The 
training set comprises 60% of the data, while the test set com-
prises 40%.

Method two merges the geometrically similar parts of areas 
D and E into a new area D, as depicted in Figure 8b. The damage 
data of areas C, D, and E are assigned values of 0, 1, and 2 re-
spectively. The training set and test set are divided in the same 
proportions as in Method one. 

Figure 8: Method one and two damaged area label assignment for 
Simulation case two.

The evaluation scores for method one are as follows: Macro-
accuracy 99.5%, Macro-F1 98.9%, and kappa 99.3%, as shown 
in Table 4. On the other hand, method two obtained the follow-
ing scores: Macro-accuracy 100%, Macro-F1 100%, and kappa 
100%, as shown in Table 5. 

Table 4: Performance evaluation parameters of Method one for 
Simulation case two

Label 0 Label 1 Label 2 Label 3

Micro-accuracy 1 0.98 1 1

Precision 1 1 1 1

Recall 1 0.92 1 1

Micro-F1 1 0.9582 1 1

Macro-accuracy 0.995

Macro-F1 0.989

kappa 0.993

Table 5: Performance evaluation parameters of Method two for 
Simulation case two

Label 0 Label 1 Label 2

Micro-accuracy 1 1 1

Precision 1 1 1

Recall 1 1 1

Micro-F1 1 1 1

Macro-accuracy 1

Macro-F1 1

kappa 1

Analysis of the performance evaluation results reveals that 
method two significantly outperforms method one in terms 
of Macro-accuracy, Macro-F1, and kappa. Confusion matrices 
and accuracy of the classification results are depicted in Fig-
ure 9a,9b for method one and in Figure 9c,9d for method two. 
In case one, the classification accuracy for labels 0, 2, and 3 is 
100%, while the accuracy for label 1 is 92%. In case two, the 
classification accuracy for labels 0, 1, and 2 all reaches 100%. 
It is evident that method one experiences misclassification due 
to the absence of exclusion of modal feature similarity interfer-
ence among similar structures. Method two, on the other hand, 
improves the classification effect significantly by combining 
similar structures D and F into the same region and using 60% 
of the new global damage data of C, D, and F as the training set 
and 40% as the test set, thereby eliminating the interference of 
modal feature similarity. 

Figure 9: Confusion matrix and accuracy for simulation case two.
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Conclusion

This study proposes a neural network-based method for dam-
age detection in symmetrical structures, taking into account the 
similarity of modal features. The change rates of mode shapes 
are used as inputs to the neural networks, which helps to mini-
mize the impact of modeling errors in finite element models 
and enables the construction of training data sets. To verify the 
effectiveness and adaptability of the proposed method, a nu-
merical case analysis is performed on a symmetrical load-bear-
ing base plate of a walker for patients with SCI. In simulation 
case one, half of the structural damage data in the symmetrical 
structure is selected as the training set to detect and classify 
the overall structural damage. This approach avoids the inter-
ference caused by the similarity of modal features in symmetri-
cal structures, simplifies the analysis process, and significantly 
improves the accuracy of damage identification. Building upon 
this, simulation case two is conducted to study similar struc-
tures. Similar areas are merged into the same detection area to 
reduce interference from the similarity of modal features and 
further enhance the accuracy of damage detection.

Declarations

Acknowledgments: The authors would like to thank the 
Science and Technology Commission of Shanghai Municipality 
(grant number: 21S31906000) , the National Natural Science 
Foundation of China (NSFC) Grant 61803265 and Medical-in-
dustrial cross-project of USST Grant 1022308524 for founding 
the study.

Funding: This work was supported in part by Science and 
Technology Commission of Shanghai Municipality (grant num-
ber: 21S31906000) the National Natural Science Foundation 
of China (NSFC) Grant 61803265, in part by Medical-industrial 
cross-project of USST Grant 1022308524.

Competing interests: Authors state no conflict of interest.

References

1. Chen JG, Büyüköztürk O. A symmetry measure for damage 
detection with mode shapes. Journal of Sound and Vibration. 
2017; 408: 123-137. https://doi.org/10.1016/j.jsv.2017.07.022.

2. Chase SB, Aktan AE. (2001). Health monitoring and management 
of civil infrastructure systems. Health Monitoring and Manage-
ment of Civil Infrastructure Systems. 2001; 4337. https://doi.org
/10.1533/9780857098986.2.141.

3. Doebling SW, Farrar CR, Prime MB. A summary review of vibra-
tion-based damage identification methods. Shock and vibration 
digest. 1998; 30(2): 91-105.

4. Zou Y, Tong LPSG, Steven GP. Vibration-based model-dependent 
damage (delamination) identification and health monitoring for 
composite structures-a review. Journal of Sound and vibration. 
2000; 230(2): 357-378. https://doi.org/10.1006/jsvi.1999.2624.

5. Kudva JN, Munir N, Tan PW. (1992). Damage detection in smart 
structures using neural networks and finite-element analyses. 
Smart Materials and Structures. 1992; 1(2): 108. https://doi.
org/10.1088/0964-1726/1/2/002.

6. Wu X, Ghaboussi J, Garrett Jr JH. Use of neural networks in de-
tection of structural damage. Computers & structures. 1992; 
42(4): 649-659. https://doi.org/10.1016/00457949(92)90132-J.

7. Szewczyk ZP, Hajela P. Damage detection in structures based 
on feature-sensitive neural networks. Journal of computing in 
civil engineering. 1994; 8(2): 163-178. https://doi.org/10.1061/
(ASCE)0887-3801(1994)8:2(163).

8. Elkordy MF, Chang KC, Lee GC. Neural networks trained by 
analytically simulated damage states. Journal of Computing in 
Civil Engineering. 1993; 7(2): 130-145. https://doi.org/10.1061/
(ASCE)0887-3801(1993)7:2(130).

9. Chen XY, Chen Z, Zhao Y. (2018). Numerical research on virtual 
reality of vibration characteristics of the motor based on GA-
BPNN model. Neural Computing and Applications. 2018; 29: 
1343-1355. https://doi.org/10.1155/2022/2976271.

10. Teng S, Chen G, Liu G, Lv J, Cui F. Modal strain energy-based struc-
tural damage detection using convolutional neural networks. 
Applied Sciences. 2019; 9(16): 3376. https://doi.org/10.1016/j.
jsv.2016.10.043.

11. Mousavi Z, Varahram S, Ettefagh MM, Sadeghi MH, Razavi SN. 
(2021). Deep neural networks-based damage detection using 
vibration signals of finite element model and real intact state: 
An evaluation via a lab-scale offshore jacket structure. Struc-
tural Health Monitoring. 2021; 20(1): 379-405. https://doi.
org/10.1177/1475921720932614.

12. Atha DJ, Jahanshahi MR. (2018). Evaluation of deep learning 
approaches based on convolutional neural networks for corro-
sion detection. Structural Health Monitoring. 2018; 17(5): 1110-
1128. https://doi.org/10.1177/1475921717737051.

13. Guo B, Han J, Li X, Fang T, You A. (2016). Research and design of 
a new horizontal lower limb rehabilitation training robot. Inter-
national Journal of Advanced Robotic Systems. 2016; 13(1): 10. 
https://doi.org/10.1177/1475921717737051.

14. Bagheri A, Alipour M, Ozbulut OE, Harris DK. A nondestructive 
method for load rating of bridges without structural properties 
and plans. Engineering Structures. 2018; 171: 545-556. https://
doi.org/10.1016/j.engstruct.2018.05.114.

15. Drygala IJ, Dulinska JM. Full-scale experimental and numerical 
investigations on the modal parameters of a single-span steel-
frame footbridge. Symmetry. 2019; 11(3): 404. https://doi.
org/10.3390/sym11030404.

16. Yang Y, Yang L, Yao G. (2021). Post-processing of high formwork 
monitoring data based on the back propagation neural networks 
model and the autoregressive-moving-average model. Symme-
try. 2021; 13(8): 1543. https://doi.org/10.3390/sym11030404.

17. Yao G, Sun Y, Wong M, Lv X. A real-time detection method for 
concrete surface cracks based on improved YOLOv4. Symmetry. 
2021; 13(9): 1716. https://doi.org/10.3390/SYM13081543.

18. Lee J W, Kim JD, Yun CB, Yi JH, Shim JM. Health-monitoring meth-
od for bridges under ordinary traffic loadings. Journal of Sound 
and Vibration. 2002; 257(2): 247-264. https://doi.org/10.3390/
sym13091716.

19. Farrar CR, James Iii GH. System identification from ambient vibra-
tion measurements on a bridge. Journal of sound and vibration. 
1997; 205(1): 1-18. https://doi.org/10.1006/jsvi.1997.0977.

20. Ko JM, Chak KK, Wang JY, Ni YQ, Chan THT. Formulation of an un-
certainty model relating modal parameters and environmental 
factors by using long-term monitoring data. In Smart Structures 
and Materials 2003: Smart Systems and Nondestructive Evalua-
tion for Civil Infrastructures. 2003; 5057: 298-307. SPIE. https://
doi.org/10.1177/1461348418786520.


