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Abstract

Hepatitis E Virus (HEV) remains a widespread yet underrecognized 
cause of acute and chronic liver disease, contributing to an estimated 
44,000 to 70,000 deaths annually. With recurrent HEV outbreaks 
and limited treatment options, there is an urgent need for effective 
therapeutic development. Though, many aspects of the HEV life cycle, 
particularly the host-virus interactions that shape infection outcomes, 
remain poorly understood. Understanding virus-host Protein-Protein 
Interactions (PPIs) is essential for targeted drug discovery, a task 
increasingly facilitated by advancements in machine learning. Here, 
we applied KNN, SVM, NV, and RF to predict novel HEV-human PPIs, 
offering critical insights into pathogen virulence strategies and potential 
therapeutic targets. Among 88 descriptors, the most effective features 
were GC content, Gene Ontology semantic similarity, Normalized 
frequency of beta-structure, and normalized frequency of alpha-helix 
and coil. Among the models, DT achieved the highest sensitivity (77%). 
while Logistic Regression (LR) had the highest specificity (52%) and 
the best accuracy of 0.61, showing robust prediction of positive and 
negative cases. Additionally, our proposed LR model has predicted 
novel potential targets in hepatitis E virus-human PPIs, which have 
been further validated through Gene Ontology enrichment analysis. 
Gene Ontology and disease enrichment analyses revealed HEV’s impact 
on immune modulation, lipid metabolism (FASN, APOB, EPHX2), and 
oncogenic pathways (FN1, JUN, HRAS, TP53), supporting its potential 
role in liver pathology and Hepatocellular Carcinoma (HCC). These 
findings provide novel insights into HEV-host interactions, offering 
targets for future antiviral strategies.
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Introduction

Hepatitis E Virus (HEV) is a leading cause of acute viral hepa-
titis, responsible for 3.3% of viral hepatitis-related deaths with 
the estimated fatalities ranged from 44,000 to 70,000 [1,2]. 
Globally, HEV infection is on the rise [3-5], with around 20 mil-
lion new cases annually, 20% of which are symptomatic [6,7]. In 
a Scottish study involving 3,500 individuals with suspected acute 
viral hepatitis, HEV detection rates were 31 times higher than 
Hepatitis A and seven times higher than Hepatitis B, highlighting 
its increasing significance as a cause of acute hepatitis [4]. These 
estimates rely on studies using assays now recognized for their 
limited sensitivity, suggesting that the actual global burden of 
hepatitis E-related disease is likely underestimated [8]. HEV is 
a quasi-enveloped, icosahedral, positive-sense, single-stranded 
RNA virus in the Paslahepevirus genus of the Hepeviridae fam-
ily [1]. Among the eight genotypes in Orthohepevirus A, GT1-4 
is most relevant to humans. HEV primarily targets hepatocytes 
but also affects the small intestine, colon, and neuronal system, 
linking it to neurological (e.g., Guillain-Barré syndrome, en-
cephalitis) and renal complications in up to 16% of symptomatic 
patients [1,2,8]. HEV infections exhibit marked global variability 
in distribution and transmission. In low-income countries, gen-
otypes 1 and 2 are transmitted via contaminated water, caus-
ing outbreaks with mortality rates of 0.2-4 Genotypes 3 and 4, 
prevalent in high-income nations, are zoonotic, linked to un-
dercooked meat, and typically asymptomatic; however, symp-
tomatic cases can involve severe illness, with jaundice (40%), 
hospitalization (75%), and mortality (3%), especially in those 
with chronic liver disease [1,7]. Medical interventions such as 
blood transfusion and organ transplantation also contribute to 
HEV transmission [9]. Global seroprevalence varies widely from 
27-80% in endemic areas (e.g., India, Southeast Asia) to 2-20% 
in non-endemic regions (e.g., Europe, the USA, East Asia). A 
meta-analysis estimated a global prevalence of 12.47%, with 
the highest rates in Africa (21.76%) and Asia (15.80%) [7]. In-
dividuals with chronic liver disease, diabetes, obesity, immuno-
suppression, and other comorbidities face heightened suscepti-
bility to severe HEV infections, with increased mortality [2,7,9]. 
Pregnant women, particularly in the third trimester, are at sig-
nificant risk of acute liver failure and pregnancy complications, 
including fetal loss and maternal mortality rates of 5.1-31% 
[2,7,10]. In 2005, HEV was linked to over 70,000 deaths and 
3,000 stillbirths worldwide [2]. Despite its global burden, HEV 
remains under-prioritized in public health. Of 44 documented 
outbreaks across 19 countries, 20% are unreported in peer-re-
viewed literature. Most occurred in Africa (61.4%) and South-
east Asia (27.3%), mainly in humanitarian settings, hospitals, 
and workplaces. Genotype 4 outbreaks (9.1%) were limited to 
high-income countries, linked to contaminated food [5]. The pe-
riodic nature of outbreaks, driven by declining anti-HEV IgG se-
roprevalence, highlights the urgent need for new therapies [8]. 
There is evidence suggesting that HEV may accelerate the pro-
gression of chronic liver disease to Hepatocellular Carcinoma 
(HCC), often associated with cirrhosis. A large US study found 
HEV IgG infections associated with increased fibrosis risk, while 
an Eastern Chinese study showed higher anti-HEV antibody 
prevalence in cancer patients, especially those with leukemia 
(32.3%) and liver cancer (31.1%), compared to controls (13%). 
A systematic review and meta-analysis by Yin et al. indicated 

that HEV infection [11] increases the risk of HCC. There is no 
approved specific antiviral for HEV, and vaccination is available 
only in China for genotype 1. Current treatments for hepatitis 
E, including ribavirin and PEGylated interferon-α (Pegan-α), are 
limited and pose challenges. Ribavirin, though relatively effec-
tive, is contraindicated during pregnancy due to teratogenicity, 
and some patients do not respond or remain viremic despite 
long-term use. Additionally, ribavirin-associated mutations may 
increase HEV replication, worsening outcomes. Pegan-α, due to 
its immunostimulatory properties, cannot be used in transplant 
patients, especially those with heart, lung, pancreas, or kidney 
transplants, as it risks acute rejection [7,12]. Understanding in-
fection mechanisms, host immune responses, and efficient mo-
lecular targeting recognition for the development of therapeu-
tics relies heavily on identification of functional Protein-Protein 
Interactions (PPIs) [13]. PPIs, representing the initial contact 
between viral proteins and host receptors, are a key focus of 
research [10,11]. Advances in computational methods, includ-
ing machine learning algorithms, have made predicting and 
validating virus-host PPIs more feasible in recent decades, sur-
passing time- and labor-intensive wet lab methods, which are 
prone to false-negative results. Specifically, machine learning 
techniques have demonstrated exceptional ability in recogniz-
ing patterns for sequence-based biological prediction tasks [14-
19]. Despite extensive research on viral hepatitis, human-HEV 
protein-protein interactions remain largely uncharted. Barman 
et al. (2014) developed a supervised machine learning-based 
approach to predict HBV/HEV-human PPIs, integrating domain-
domain association, network topology, and sequence features. 
While their study provided a framework for predicting unknown 
HEV-human PPIs, the evaluation of HEV-specific interactions re-
mained limited, and performance metrics for HEV-host inter-
actions were not explicitly reported. To build upon these find-
ings, we present a refined approach that specifically focuses 
on HEV-host interactions, utilizing classifiers including Logistic 
Regression, SVM, Naïve Bayes, Decision Trees, Random Forest, 
and KNN using metrics like sensitivity, specificity, accuracy, PPV, 
NPV, AUC, and prevalence rate. Key predictors such as Amino 
Acid Indices in Aaindex1, Amino acid sequence-based features, 
Nucleotide sequence-based features [20], Gene Ontology se-
mantic similarity, and Network topology-based features. This 
study refines HEV-host PPI prediction, addressing previous gaps 
and advancing HEV pathogenesis understanding and therapeu-
tic target identification.

Material and methods

Dataset

To perform a virus-host PPI classification task effectively, 
both positive (existing interactions) and negative (non-interac-
tions) samples need to be learned or considered for training a 
predictive model.

Positive dataset: To generate positive Host-viral Protein-
Protein Interactions (HI-PPIs) [21], all interactions involving HEV 
were collected from databases: Intact, Virus Mint, DIP, STRING, 
and Bio GRID [22].

Negative dataset: Creating a reliable negative dataset for PPI 
prediction is challenging due to the lack of experimentally veri-
fied non-interacting protein pairs. Previous studies suggest that 
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interspecies PPI prediction requires a balanced ratio of positive 
to negative samples (1:1), but standardized negative samples 
are lacking. Drawing on viral-host protein pathway research, 
which shows viruses target highly connected human proteins, 
we designed the negative dataset using the Human Protein Ref-
erence Database (HPRD) release 9, following Chakraborty et al. 
After excluding proteins common to the positive dataset, we 
identified unique, non-redundant human proteins, ranked by 
interaction degree. Proteins with lower connectivity were se-
lected as negative dataset candidates, and sequences for the 
proteins with the lowest interaction degrees were extracted 
from Uniport database [23]. Positive and negative datasets 
were then divided into training and independent sets. Specifi-
cally, 80% of total protein pairs from each dataset were ran-
domly selected for training, while the remaining pairs formed 
the independent datasets.

Encoding proteins as feature vectors

The performance of classification algorithms depends on ef-
fective feature extraction. Since proteins vary in length, consis-
tent representation of protein sequences is crucial for applying 
machine learning to PPIs [17,23]. To represent human and HEV 
proteins as feature vectors, we utilized the A index database, 
which provides numerical indices for various physicochemical 
and biochemical properties of amino acids. The A index is di-
vided into three sections: AAindex1 (amino acid indices with 20 
numerical values), AAindex2 (amino acid substitution matrix), 
and AAindex3 (statistical protein contact potentials). Key physi-
cochemical properties include hydrophobicity, alpha propensi-
ty, and beta propensity. The A index comprises 544 sets of phys-
icochemical properties from various literature sources, with a 
selected subset used as features for the classification task [24].

Amino acid indices in Aa index1

Physicochemical indices

STERIMOL length of the side chain: STERIMOL constants 
contribute to exploring structure-activity relationships in pep-
tides [25] and describe the steric bulk of a substituent based 
on its dimensions in three spatial directions. “L” denotes the 
length of the side chain, measured in the direction in which it is 
attached to the glycine backbone [26,27].

Van der waals parameter R0: The empirical measure of the 
atomic size, representing the distance between the centers of 
adjacent atoms when they are just in contact. It varies for dif-
ferent atoms within the amino acid, reflecting their specific van 
der Waals radii [28].

Volume: Molecular volume stands out as one of the proper-
ties most strongly correlated with protein residue substitution 
frequencies [29].

Alpha-CH chemical shifts: These chemical shifts offer in-
sights into the local structural environment, aid in determining 
secondary structure elements, and help map interaction sites. 
Changes in chemical shifts can indicate conformational changes 
upon interaction, helping to understand the dynamic behavior 
of proteins during interactions [30].

Mean volumes of residues buried in protein interiors: It in-
volves measuring and analyzing the average volume occupied 
by amino acid residues that are located within the interior of a 
protein, providing insights into the packing and compactness of 
the protein’s core and shedding light on the factors influencing 

protein folding, stability, and structure. The mean volumes of 
buried residues are calculated based on the three-dimensional 
coordinates of protein structures and contribute to our under-
standing of the structural features crucial for maintaining a pro-
tein’s three-dimensional architecture [31].

Hydrophobicity indices

The hydrophobic component of transfer free energies for 
amino acid side chains in α-helical polypeptides: It presents 
the values for the hydrophobic component of the free energy 
of water-oil transfer for different amino acid side chains in an 
alpha-helical conformation. It is calculated based on the surface 
area and the hydrophobicity of each amino acid. This calcula-
tion takes into account the idea that hydrophobic amino acids 
prefer a nonpolar environment (like oil) over water [32].

Free energy in beta-strand conformation: It refers to the 
energy associated with the stability of amino acids adopting a 
beta-strand structure in proteins. It quantifies the thermody-
namic preference of amino acids for forming beta-strands, as 
indicated by their positions in the Ramachandran plot not con-
sidering the identity and the conformation of the surrounding 
residues in the amino acid sequence [33].

Scaled side chain hydrophobicity values: The hydrophobic 
characteristics of the side chains of the 20 common physiologi-
cal amino acids in proteins that undergo post-translational or 
co-translational modifications [34].

Optimized relative partition energies-method D: It is a com-
putational approach for predicting PPIs and assessing complex 
stability. It calculates Relative Solvent Accessibility (RSA) val-
ues for amino acids, introduces optimized parameters for each 
amino acid type, and computes ORPE to represent individual 
amino acid contributions to complex stability based on solvent 
exposure. The sum of ORPE values predicts interactions, where 
lower total energies indicate more stable interactions. Method 
D refines earlier methods (A-C) with optimized parameters, en-
hancing accuracy in predicting protein-protein interaction ener-
gies and complex stability [35].

Hydration potential: Refers to the energetic considerations 
associated with the transfer of a nonpolar solute from a hydro-
phobic environment to an aqueous (polar) environment. This 
concept is crucial for understanding the hydrophobic effect, a 
phenomenon in which hydrophobic molecules or residues tend 
to cluster together to minimize their exposure to water, contrib-
uting to the stability of biomolecular structures.

Mean Fractional Area Loss (MFAL): MFAL is a parameter 
used to quantify the packing efficiency of amino acid side chains 
within the core of a protein. It assesses how much space is lost 
or excluded in the protein interior due to the presence of side 
chains. A lower MFAL indicates a more tightly packed hydropho-
bic core, which is generally associated with a well-folded and 
stable protein structure [36].

Flexibility parameter for one rigid neighbor: Component of 
the Karplus–Schulz matrix used in predicting torsion angles (phi, 
psi, and omega) in proteins. It represents the influence of the 
dihedral angle of one residue on its neighbor in the presence of 
one neighboring residue. The Karplus–Schulz model is a statisti-
cal approach that correlates dihedral angles with local protein 
structure, and this flexibility parameter captures the energetic 
and geometric effects of neighboring residues on torsional an-
gles [37].
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Normalized flexibility parameters (B-values), average: Also 
derived from the Karplus and Schulz approach, it represents 
a measure of the flexibility or mobility of amino acid residues 
within protein structures. These B-values are normalized to 
have a mean of 1.0 and a root mean square deviation of 0.3, 
facilitating consistent comparison across different proteins. 
Residue types are categorized as flexible or rigid based on their 
average normalized B-values, with values below 1.0 indicating 
rigidity [38].

Ratio of buried and accessible molar fractions: It is a metric 
used to quantify the distribution of amino acid residues in pro-
teins. It compares the molar fractions of a specific amino acid 
type that is either buried within the protein’s interior or acces-
sible on its surface to the solvent. The ratio provides insights 
into the preference of a particular amino acid type to be buried 
or exposed, offering valuable information about the protein’s 
structural characteristics, hydrophobicity, and packing [39].

Atom-based hydrophobic moment: Quantifies the distribu-
tion and orientation of hydrophobic residues within a protein 
structure at the atomic level by considering their individual 
contributions and spatial arrangement. This concept provides 
insights into the anisotropy of hydrophobicity in proteins and 
has been used to study aspects of protein folding, stability, and 
structure prediction [40].

Residue Accessible Surface Area (ASA) in folded protein: 
ASA in folded proteins refers to the surface area of an amino 
acid residue that is accessible to solvent molecules in the folded 
state of a protein. It is calculated by considering the difference 
between the total surface area of the residue and the surface 
area buried upon protein folding. Residue ASA is crucial for un-
derstanding the solvent exposure and packing of amino acid 
residues within a protein, providing insights into protein struc-
ture, function, and interactions [41].

TOTFT (Total Polarity Index of Face Turns) and TOTLS (To-
tal Polarity Index of Loop Structures): These indices were de-
signed to capture various aspects of protein structure and be-
havior, with a focus on hydrophobicity, polarity, and structural 
features like turns and loops. TOTFT is the sum or combination 
of the primary and alternative polarity indices for face turns in 
a protein. TOTLS is the sum or combination of the primary and 
alternative polarity indices for loop structures in a protein [42].

Optimal matching hydrophobicity: Prediction of transmem-
brane segments in membrane proteins. Membrane-spanning 
regions often consist of hydrophobic alpha helices, and this 
method aimed to identify such patterns within protein se-
quences [43].

Transfer free energy from octanol to water: This term re-
fers to the free energy change associated with transferring a 
solute molecule from an octanol (hydrophobic) environment 
to water (hydrophilic) environment. It quantifies the energetics 
of a solute’s interaction with hydrophobic and hydrophilic envi-
ronments, providing insight into the hydrophobic effect, which 
plays a significant role in processes such as protein folding and 
ligand binding [44].

Weights for beta-sheet at the window position of -5: As-
signs different weights to amino acid positions within a window 
surrounding a particular residue in a protein sequence for pre-
dicting secondary structure elements, such as beta-sheets or 
coil regions. This weight reflects the importance of the amino 
acid residues at -5 positions in contributing to the prediction 

of beta-sheet secondary structure. The positive or negative 
weights would indicate the degree of influence each position 
has on the prediction.

Weights for coil at the window position of -6: This is a 
weight assigned specifically to the amino acid position at -6 
within a sequence window. It captures the contribution of the 
amino acid at position -6 in predicting coil regions in the sec-
ondary structure [45].

Transfer free energy to surface: It refers to the energy re-
quired or released when amino acid residues move from a so-
lution to the surface. This transfer free energy to the surface 
serves as a measure of the hydrophobicity of amino acids, with 
lower surface tension values indicating higher hydrophobicity 
[46].

Normalized positional residue frequency at helix termini 
N’: It refers to a measure in the context of α-helices, indicating 
the preference of specific amino acid residues at the N-termi-
nus (NH₂-exposed end) and C-terminus (COOH-exposed end) 
positions. It involves comparing the occurrence of a residue at 
N’ position to its overall frequency in the entire dataset, with 
values greater than 1 indicating a preference and values less 
than 1 indicating a dereference. The term is used to quantify 
how certain residues are favored or avoided at the ends of he-
lices, considering disruptions in the regular hydrogen bonding 
pattern [47].

Loss of side chain hydropathy by helix formation: It refers 
to the reduction in amino acid side-chain hydrophobicity when 
an extended polypeptide folds into an α-helix. It’s estimated by 
comparing hydrophobic components in extended and helical 
conformations, revealing an average loss of about 0.6 kcal/mol 
per residue. The resulting hydropathy scale is a rough approxi-
mation of the most favorable transfer free energies during helix 
formation, considering exceptions for specific amino acids and 
potential corrections for hydrogen bonding effects [48].

Free energies of transfer of AcWl-X-LL peptides from bilayer 
interface to water: Energy changes during peptide transition 
from the lipid bilayer interface to water. These values contrib-
ute to an interfacial hydrophobicity scale, offering insights into 
peptide-membrane interactions. Despite approximations, the 
scale serves as a crucial reference for understanding the ther-
modynamics of these interactions [49].

α-propensity indices

Normalized frequency of middle helix: It is a measure that 
standardizes the occurrence of amino acids in the middle resi-
dues of helices across different proteins, correcting for varia-
tions in amino acid composition.

Helix initiation parameter at posision i,i+1,i+2: It refers to a 
parameter used for describing the initiation of α-helical struc-
tures in peptides. It considers specific interactions involving 
side chains, the N- and C-termini of helices, and influences the 
statistical weight of an α-helix between specified positions in 
a peptide. This parameter contributes to determining the like-
lihood of α-helix formation at the designated positions within 
the peptide sequence [50].

Helix formation parameters (delta delta G): It measures the 
energy change when a peptide transitions from a random coil 
to a helical structure. It indicates the thermodynamic stability 
of helices, comparing the free energy of helix formation for a 
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specific sequence to a reference state like Glycine (Gly), reveal-
ing the intrinsic conformational preferences [51].

Thermodynamic beta sheet propensity: It measures how 
amino acids preferentially contribute to the stability of anti-
parallel β-sheet structures, determined by their substitutions 
in a zinc-finger host peptide. This scale is established through 
precise energy measurements using a competitive cobalt(II)-
binding assay in aqueous solution [52].

Alpha helix propensity of position 44 in T4 lysozyme: It in-
dicates the likelihood of amino acids, when substituted at this 
site, to influence the formation of an alpha helix. The measure-
ment involves assessing stability changes resulting from amino 
acid substitutions at the solvent-exposed position within the 
alpha helix (residues 39 to 50) in T4 lysozyme. This provides 
insights into the structural preferences of various amino acids 
at position 44 regarding their impact on alpha helix formation 
[53].

Normalized positional residue frequency at helix termini 
N3 and C’ (Aurora-Rose): It shows the frequency of a particular 
amino acid at the N-terminus or C-terminus of an alpha-helix, 
specifically at the N3 position, normalized against its overall dis-
tribution in the dataset. A normalized frequency of 1 implies no 
preference, while values above or below 1 signify selection for 
or against that residue at the C-terminus or N3 position of the 
N-terminal helix [47].

Hydrophobicity Coefficient (RP-HPLC, C4, 0.1%TFA/MeCN/
H2O): A measure of amino acid or peptide hydrophobic affinity 
in C4 reversed-phase high-performance liquid chromatography 
(RP-HPLC), using a mobile phase of 0.1% trifluoroacetic acid, 
acetonitrile, and water. This coefficient aids in characterizing 
the hydrophobic contribution to protein stability, offering in-
sights into surface free energy, protein folding, and interactions 
that influence protein-protein binding [54].

Linker propensity from medium dataset (linker length is 
6-14): Linker propensity in the medium dataset refers to the 
preference of specific amino acids within linkers of moderate 
length (6-14 residues). It involves calculating the ratio of amino 
acid occurrences in the linker set to their occurrences in the full 
protein set.

Principal component IV: It is a composite chemical factor 
derived from the physic-chemical properties of amino acids. It 
appears to involve hydroxyl and sulfhydryl groups, along with a 
potential connection to the ability of amino acids to form hy-
drogen bonds. It contributes to understanding the relationship 
between chemical structure and biological activity in hormone 
peptides [55].

Normalized frequency of alpha-helix and coil: The normal-
ized frequency of alpha-helix is the percentage of amino acid 
residues predicted or observed to form alpha-helical structures 
in a protein sequence. Similarly, the normalized frequency of 
coil represents the proportion of residues in coil conformations. 
Both frequencies are expressed relative to the total sequence 
length [56].

Information measure for coil, loop, and turn: Information 
measure for coil, loop, and turn refers to a quantitative assess-
ment of the relationship between amino acid sequence and 
the conformational states of coil, loop, and turn structures in 
globular proteins. These metrics provide a means to systemati-
cally assess how certain amino acid sequences contribute to the 

structural characteristics of coil, loop, and turn regions.

β-propensity indices

Normalized frequency of beta-structure: It denotes a scaled 
measure quantifying the prevalence of beta-structures across 
diverse proteins. The term implies an adjustment for compara-
bility [56].

Information measure for pleated-sheet: It quantifies the 
significance of residues adopting pleated-sheet conformation in 
proteins. It assesses the frequency of pleated-sheet occurrenc-
es at various residue separations (m values), representing the 
distances between amino acid residue pairs. This measure of-
fers insights into amino acid preferences within these structures 
and contributes to statistical analyses of protein sequences and 
conformations, considering different separation distances along 
the protein chain [57].

Conformational preference for all beta-strands: It indicates 
the likelihood of amino acid residues adopting specific struc-
tural arrangements within antiparallel β-sheets, with a focus on 
hydrogen bond patterns and chain connectivity [58]. 

Propensity of amino acids within pi-helices: It refers to the 
specific amino acid preferences within π-helical structures. Aro-
matic and large aliphatic amino acids are favored, while small 
amino acids like Ala, Gly, and Pro are avoided. These propensi-
ties are distinct to π-helices and significantly differ from overall 
amino acid distributions [59].

Composition indices

AA composition of CYT2 of single-spanning proteins: Dis-
tribution of amino acids within the Cytoplasmic region (CYT2) 
of type-11 single-spanning membrane proteins. Analyzing the 
types and proportions of amino acids in this region provides 
insights into the chemical makeup of the cytoplasmic side in 
single-spanning membrane proteins.

AA composition of EXT of multi-spanning proteins: It de-
scribes the amino acid distribution in the extracellular region of 
multi-spanning proteins, revealing the composition of the por-
tion facing the external environment.

AA composition of CYT of multi-spanning proteins: It re-
fers to the amino acid distribution in the cytoplasmic region of 
multi-spanning proteins, providing insights into the chemical 
composition on the cytoplasmic side.

AA composition of MEM of single-spanning proteins: It de-
tails the amino acid distribution in the transmembrane region 
of single-spanning proteins, indicating the composition of the 
portion crossing the cell membrane [60].

Distribution of amino acid residues in the 18 non-redun-
dant families of mesophilic proteins: It refers to the relative 
occurrence or arrangement of individual amino acids within the 
protein sequences of 18 distinct families of mesophilic proteins. 
This analysis is crucial for understanding the unique amino acid 
patterns in proteins adapted to moderate temperatures, offer-
ing insights into factors influencing protein stability and func-
tion. Comparing these distributions with thermophilic proteins 
can reveal molecular mechanisms relevant to stability [61].

Entire chain composition of amino acids in extracellu-
lar proteins of mesophilic bacteria: Overall distribution and 
abundance of amino acids throughout the entire amino acid 
sequence of extracellular proteins in mesophilic bacteria. This 
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comparison provides insights into how proteins have adapted 
to different environmental conditions, revealing selective pres-
sures, functional adaptations, and structural changes [62].

Other features applied in this study are discussed below 

Amino acid sequence-based features

 Amino acid composition (ACC): The percentage of each 
amino acid in a protein.

Conjoint Triad (CT): CT feature groups three adjacent amino 
acids into units and calculates their frequency in a protein se-
quence. CT categorizes amino acids into seven groups based on 
their properties. Using a 3-amino acid window, the frequency 
of each CT is determined as the window slides through the se-
quence from N- to C-terminus, resulting in a 686-dimensional 
vector representing a protein pair [63].

Relative Frequency of Amino Acid Triplets (RFAT): It quan-
tifies the prevalence of specific amino acid triplets in proteins 
involved in PPIs. RFAT can provide insights into the functional 
relevance of certain amino acid combinations in the context of 
these interactions. It also allows us to assess the overrepresen-
tation or underrepresentation of specific amino acid triplets 
in the proteins involved in host-pathogen interactions. Math-
ematically, RFAT is calculated as follows: RFAT (i, j, k) = (Count of 
the triplet “ijk” in the dataset) / (Total number of triplets in the 
dataset). i, j and k represent the individual amino acids within 
the triplet.

Frequency Difference of Amino Acid Triplets (FDAT): FDAT 
is a metric used to discover unique amino acid triplet patterns 
associated with PPIs. The formula for FDAT is as follows: FDAT 
(i, j, k) = RFAT(i, j, k) in interacting proteins - RFAT(i, j, k) in non-
interacting proteins. “i,” “j,” and “k” represent individual amino 
acids within the triplet. By subtracting these relative frequen-
cies, FDAT helps identify amino acid triplet patterns that are 
common in host-pathogen interactions. This aids in pinpointing 
specific triplet sequences with potential functional relevance in 
the context of these interactions [64].

Pseudo Amino Acid Composition (PAC): PAC is utilized for 
predicting protein subcellular localization and membrane pro-
tein type. In contrast to amino acid composition, PAC relies on 
sequence-order information. It captures the frequency of indi-
vidual amino acid composition while incorporating sequence-
based data into its pseudo components [22].

Biosynthesis energy: Amino acids are synthesized from met-
abolic precursors, such as pyruvate and 3-phosphoglycerate. 
The total cost of this process, referred to as biosynthesis energy, 
is calculated using the Wagner method [22].

Thermophilic propensity: It refers to scores assigned to each 
amino acid, indicating their likelihood of contributing to the 
thermophilic nature of proteins. Calculated using the SCMTPP 
predictor from a dataset of both thermophilic proteins (TPPs) 
and non-TPPs, these scores are analyzed to better understand 
the physicochemical properties associated with TPPs [65].

Antegenic propensity: Antigenic propensity is a calculated 
value indicating the likelihood of an amino acid being part of an 
antigenic determinant. It is derived from a method using physi-
cochemical properties and epitope frequencies. Hydrophobic 
residues like Cys, Val, and Leu, when on the protein’s surface, 
tend to have higher antigenic propensities [66].

Disordered proteins: Intrinsic disorder in proteins refers to 
regions that prevent them from adopting a specific three-di-
mensional structure but enable conformational changes during 
interactions. Pathogen-interacting proteins, especially those in 
host-pathogen networks, exhibit a higher proportion of intrinsi-
cally disordered regions. Proteins with intrinsically disordered 
regions are more prone to pathogen attacks [67].

Nucleotide sequence-based features

GC content: The percentage of guanine and cytosine nitrog-
enous bases in a DNA molecule. This measure indicates the 
stability of DNA sequences because the guanine-cytosine bond 
forms a triple bond, making sequences with higher GC content 
more stable than those with lower GC content, where adenine 
and thymine form a double bond.

Codon usage: Also known as codon bias, indicates how often 
different synonymous codons appear in coding DNA [68]. It is 
determined by the ratio of the frequency of a specific codon 
(designated as “fi”) for a particular amino acid (indexed by “j”) 
to the total occurrence of that amino acid in the given sequence 
(referred to as “nj”). Mathematically, codon usage for the ith 
codon can be expressed as: CUi = fi/nj.

Relative Synonymous Codon Usage (RSCU): Measure of co-
don usage that calculates the frequency of a specific codon in 
relation to the frequency that would be expected if all codons 
for the same amino acid were equally distributed. Mathemati-
cally, RSCU for the ith codon of the jth amino acid is computed 
as: RSCUi,j = (fi,j) / [(1/nj) * Σ(fi,j)]. Here, fi,j represents the fre-
quency of the ith codon for the jth amino acid, and nj is the total 
occurrence of that amino acid in the sequence and normalizes 
the codon frequency by dividing it by the expected frequency 
assuming equal distribution of codons.

The Codon Adaptation Index (CAI): A straightforward mea-
sure of the bias in Relative Synonymous Codon Usage (RSCU) 
and is calculated as follows:

CAI = Π (RSCUi / RSCUmax)

Here n is the length of the protein sequence, RSCUi is the 
RSCU value of the ith codon, and RSCUmax is the maximum 
RSCU value among codons for the amino acid associated with 
the ith codon. The CAI calculates the geometric mean of the 
RSCU values for each codon in a protein sequence and normal-
izes it by dividing by the geometric mean of the maximum RSCU 
values for each amino acid. This index is a useful indicator of 
how well the codon usage in a gene matches the codon usage 
in a reference set, often chosen to represent highly expressed 
and efficiently translated genes.

Stacking energy: According to the nearest-neighbor (NN) 
model for nucleic acids, takes into account how the neighboring 
base pairs’ identity and orientation influence the stability of a 
particular base pair. The calculation of stacking energy ( G∇ ) is 
as follows:

G∇ i,j,k,l = ∑ (ni * G∇ i) + G∇ j,k + G∇ k,l + G∇ l,m

Here, G∇  for the initial (i), middle ∆∆j), and end (k, l) is de-
termined using unified nearest-neighbor (NN) free energy pa-
rameters. If the duplex is self-complementary, the symmetry is 
maintained by setting G∇ l,m to +0.43 kcal/mol; otherwise, it’s 
set to zero if the duplex is non-self-complementary.

The interaction energy: A measure of the dispersion and 
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repulsion energies between a codon and its complement. It is 
calculated using the formula: IE = ∑ (ei * ni) / ∑ (ni) In this for-
mula: IE represents the interaction energy, n is the length of 
the protein, ni is the frequency of the ith amino acid, and ei is 
the interaction energy associated with the ith amino acid. The 
interaction energy is determined by considering the frequency 
of each amino acid and its associated interaction energy.

Gene ontology semantic similarity

Gene Ontology (GO) provides a hierarchical framework to 
annotate genes across organisms, categorizing them by Mo-
lecular Function (MF), Cellular Components (CC), and Biological 
Processes (BP) [69]. This structured approach aids in predicting 
Protein-Protein Interactions (PPI), as interacting proteins often 
share similar biological roles, functions, and cellular locations, 
exhibiting high semantic similarity in GO terms [22].

Network topology-based features:

Degree: The degree of a protein refers to how many other 
proteins it interacts with.

Neighborhood connectivity: It is the average degree of all 
neighboring proteins of a given protein, excluding self-interac-
tions.

Average shortest path Llength: This measures the average 
length of the shortest paths between the given protein and all 
other proteins.

Stress: Stress represents the number of shortest paths pass-
ing through a specific protein in the human Protein-Protein In-
teraction Network (PPIN). It signifies the workload carried by 
that protein in the network.

Eccentricity: Eccentricity measures the greatest distance be-
tween a specific protein and any other protein within the hu-
man PPIN [70].

Closeness: Reciprocal of the total distance from the given 
protein to all other proteins in the human PPIN.

Betweenness: This centrality metric is a semi-normalized 
version of stress centrality. It calculates the ratio of the number 
of shortest paths passing through the protein to the total num-
ber of shortest paths between all protein pairs in the human 
PPIN.

Radiality: Radiality is computed by subtracting the average 
shortest path length of a protein from the length of the longest 
path in the connected component, plus 1. To normalize it, the 
radiality of each protein is divided by the length of the longest 
path in the connected component.

Clustering coefficient: This coefficient measures the density 
of connections in the local region of a protein. It is the ratio of 
edges between a protein’s neighbors to the total possible edges 
among them [22].

Post-translational modifications

Post-Translational Modifications (PTM) play a vital role in 
regulating protein functions, impacting PPIs in particular. To 
emphasize the significance of PTMs, we employed PTM such 
as deacetylation, phosphorylation, glycosylation, among others 
that are documented in the HPRD database to represent human 
proteins. For each set of 20 amino acids, the potential for 31 dif-
ferent PTM types exists. Consequently, each human protein was 

depicted as a binary feature vector with a length of 620. Each 
element within this vector, for a given protein, signifies whether 
a specific amino acid has undergone a specific PTM or not [28].

Prediction algorithm

Common automated machine learning techniques [71,72], 
such as Random Forest, Naïve Bayes, and SVM, are often uti-
lized to predict PPIs. These methods typically employ a five-fold 
cross-validation approach to evaluate their predictive perfor-
mance. In this paper we took advantage of Linear regression 
(LR), K Nearest Neighbor (KNN), Support Vector Machine (SVM), 
Random Forest, and Naïve Bayes to build our models [73]. In 
brief, Support Vector Machine (SVM) is a powerful learning al-
gorithm known for finding effective separation hyperplanes, 
making them suitable for linear classification. Random Forest 
is a popular supervised machine learning algorithm. It creates 
multiple decision trees and combines their outputs through 
majority voting for classification and averaging for regression, 
providing stability and accuracy in a wide range of machine 
learning applications. The Naïve Bayes algorithm, based on 
Bayes’ theory, is also a supervised learning approach primarily 
used for classification. It’s called “naïve” because it operates on 
the assumption that the value of a specific feature is indepen-
dent of the value of any other feature [17,22].

Performance assessment measures

To evaluate feature selection’s impact, we used Accuracy 
(ACC), Sensitivity (Sen), Specificity (Spec), Positive Predictive 
Value (PPV), Negative Predictive Value (NPV), and prevalence 
rate. TP and TN represent correctly predicted positive and nega-
tive cases, while FP and FN are misclassified instances. Accuracy 
reflects overall prediction correctness, sensitivity measures true 
positive identification, and specificity assesses true negative 
recognition [74]. PPV indicates the proportion of true positives 
among predicted positives, while NPV measures true negatives 
among predicted negatives. Prevalence rate represents the pro-
portion of actual positive cases in the dataset. These metrics 
collectively assess classification performance [16].

Feature importance

To compute the contribution of the different descriptors 
in prediction, we removed each feature type in turn and then 
computed the accuracy of the proposed prediction model, the 
higher the loss of accuracy, the more important the feature.

Disease enrichment analysis

To investigate whether the unknown virus-interacting pro-
teins predicted in our study are associated with different stages 
or subtypes of liver cancer, the extracted gene set was sub-
mitted to Enrich, selecting Diginet as the reference database. 
Diginet provides curated and predicted gene-disease associa-
tions, allowing us to determine whether the enriched proteins 
overlap with known liver cancer-associated genes [75]. Signifi-
cantly enriched disease terms (p≤0.005, adjusted for multiple 
testing) were examined for their biological relevance. If liver 
cancer-related terms were enriched, this would suggest that vi-
ral proteins interact with host factors involved in cancer-related 
pathways, potentially contributing to tumorigenesis or disease 
progression.

GO annotation and pathway enrichment analysis

We further performed functional enrichment analysis to 
delineate genotype-specific host pathways targeted during in-
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fection, providing insights into viral adaptation and potential 
therapeutic targets. The DAVID web server (The Database for 
Annotation, Visualization and Integrated Discovery) was utilized 
to identify significantly enriched Gene Ontology (GO) annota-
tion terms in the predicted human proteins interacting with 
hepatitis E virus. Gene Ontology (GO) term selection was per-
formed across Molecular Function (MF), Biological Process (BP), 
and Cellular Component (CC) categories. We included only GO 
biological process annotation terms with a level greater than 2 
and a significant False Discovery Rate (FDR) below 0.005.

Results

Overall, we identified 196 interactions, all within the Her-
pesviridae family and specifically the Paleovirus genus. Notably, 
HEV genotype 1 (India/Hyderabad) exhibited the highest num-
ber of interactions [117], followed by HEV genotype 3 (Swine/
US) with 68 interactions and HEV genotype 1 (China/Hebei) 
with 11 interactions.

Classifier evaluation metrics comparison: The bar plot (Fig-
ure 1) compares the performance of six classifiers (SVM, DT, 
KNN, RF, NB, and LR) across multiple evaluation metrics, includ-
ing accuracy, sensitivity, specificity, Positive Predictive Value 
(PPV), and Negative Predictive Value (NPV). Among the mod-
els, DT achieved the highest sensitivity (77%). while LR had the 
highest specificity (52%) and the best accuracy of 0.61. Logis-
tic Regression (LR) also led with an AUC of 0.63. PPV and NPV: 

Figure 1: The results of various models (LR, SVM, NB, DT, and KNN) 
were assessed using sensitivity, specificity, PPV, NPV, AUC, and 
prevalence rate.

Figure 2: All features were ranked in order of importance, from 
the most significant to the least significant, and the top ten were 
selected for further analysis.

Figure 3: Radar graph to show the comparative performance of LR, 
SVM, KNN, NB, RF, and DT classifiers when trained on important 
features versus all features. Following the feature importance 
analysis, we trained the models using the selected key features 
and assessed their performance metrics. The radar chart (Figure 
3) illustrates a comparison between models trained on key feature 
sets and those trained on the full feature sets. The findings reveal 
that focusing on important features resulted in more accurate 
predictions for most classifiers, while maintaining efficiency 
comparable to models using all features. The performance 
remains consistent between all features and important features, 
with minimal deviation across all classifiers. This indicates that the 
selected important features capture the key patterns in the data 
effectively, offering equivalent predictive power as the full feature 
set.

Both were highest for Logistic Regression (LR), showing robust 
prediction of positive and negative cases. The other models, 
including Support Vector Machine (SVM), Naive Bayes (NB), 
and Random Forest (RF), showed moderate but less consistent 
performance, with accuracy values ranging from 0.56 to 0.60. 
Overall, while LR stands out as the most balanced model, DT 
demonstrated the highest sensitivity (0.77), making it more ef-
ficient in detecting true PPIs.

Important features

To assess the contribution of each descriptor type, we sys-
tematically removed one feature type at a time and recalcu-
lated the evaluation metrics of the proposed prediction model. 
A greater decline in metrics indicated a higher importance of 
the removed feature type. As shown in figure 2, GC content, 
Gene Ontology semantic similarity, Normalized frequency of 
beta-structure, normalized frequency of alpha-helix, and coil 
emerge as the top four features, playing a critical role in pre-
dictive accuracy. Features related to structural and biochemical 
properties, such as Biosynthesis energy, Radiality, and Hydro-
phobicity Coefficient, also rank high, underlining their biological 
relevance. Lower-ranked features, such as Antigenic propensity 
and Thermophilic propensity, contribute less significantly to 
model performance, validating their exclusion during dimen-
sionality reduction.

Disease enrichment analysis

The disease enrichment analysis using the DisGeNET data-
base in Enrichr identified significant associations between the 
virus-interacting host proteins and various cancer types, par-
ticularly liver carcinoma (p=2.61×10⁻²⁷), which exhibited the 
highest statistical significance. Additional highly enriched dis-
ease terms included neoplasm metastasis (p=7.32×10⁻²⁷) and 
tumor progression (p=1.79×10⁻²⁰), suggesting that the identi-
fied proteins may be involved in cancer-related mechanisms, in-
cluding tumor development and metastatic spread. Moreover, 
Hepatitis C (p=1.99×10⁻²²) and Hepatitis B (p=2.91×10⁻¹⁹) were 
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Figure 4: Bar chart of top enriched terms from the DisGeNET 
gene set library. The top enriched terms for the input gene set are 
displayed based on the lLog10 (p-value), with the actual p-value 
shown next to each term. The term at the top has the most 
significant overlap with the input query gene set.

also significantly enriched, reinforcing the potential role of viral 
infections in liver-related pathologies. Since chronic infections 
with these viruses are well-documented risk factors for hepa-
tocellular carcinoma, this enrichment suggests a functional 
overlap between the virus-interacting proteins in this study and 
those implicated in viral hepatitis-associated liver disease pro-
gression.

Interestingly, besides liver-related diseases, malignant neo-
plasms of breast [76] (p=5.94×10⁻²⁷) and malignant neoplasms 
of the prostate (p=1.23×10⁻²¹) were among the most signifi-
cantly enriched disease categories [77]. This may indicate that 
some of the identified proteins are also involved in broader on-
cogenic processes that extend beyond liver cancer, potentially 
playing a role in cell cycle regulation, apoptosis, or immune eva-
sion mechanisms shared across multiple cancer types. Overall, 
these findings suggest that the virus-interacting host proteins 
identified in this study are not only functionally enriched in liver 
cancer pathways but also exhibit significant associations with 
metastatic progression and viral hepatitis, which are key factors 
in hepatocarcinogenesis. This highlights potential avenues for 
further investigation into the role of viral infections in cancer 
development and progression. Table 1 presents the genes en-
riched in liver cancer along with their functions. 

Table 1: Hepatocellular carcinoma-associated genes identified through enrichment analysis and their functions 

Gene Name Gene Symbol Function

Ribosomal Protein L30 RPL30 Component of the 60S ribosomal subunit; involved in protein synthesis.

Enolase 1 ENO1 Glycolytic enzyme that catalyzes the conversion of 2-phosphoglycerate to 
phosphoenolpyruvate.

Solute Carrier Family 4 Member 2 SLC4A2 Anion exchanger involved in pH regulation and bicarbonate transport.

Prohibiting 2 PHB2 Mediator of transcriptional repression and involved in mitochondrial function.

Structural Maintenance of Chromosomes 4 SMC4 Component of the condensin complex, essential for chromosome condensation.

Actin Beta ACTB Cytoskeletal protein involved in cell motility, structure, and intracellular 
transport.

TANK Binding Kinase 1 TBK1 Kinase involved in innate immune response and activation of interferon 
regulatory factors

Sterol Carrier Protein 2 SCP2 Involved in the intracellular transport of lipids and cholesterol metabolism.

Paternally Expressed 10 PEG10 Imprinted gene derived from retrotransposons, involved in cell proliferation.

Checkpoint Kinase 2 CHEK2 Key kinase in DNA damage checkpoint control and tumor suppression.

Ferritin Heavy Chain 1 FTH1 Stores iron in a non-toxic form, essential for iron homeostasis.

Statman 1 STMN1 Regulator of microtubule dynamics, important for cell cycle progression.

ADP Ribosylation Factor Interacting ARFIP2 Involved in actin cytoskeleton organization.

Tripartite Motif Containing 27 TRIM27 E3 ubiquitin ligase involved in transcriptional regulation and apoptosis.

Tripartite Motif Containing 23 TRIM23 E3 ubiquitin ligase playing a role in antiviral response and autophagy.

ST6 Beta-Galactosidase Alpha-2,6-Sialyltransferase 1 ST6GAL1 Enzyme involved in cell-cell interactions.

Keratin 8 KRT8 Intermediate filament protein maintaining epithelial cell integrity.

Acyl-CoA Synthetase Long Chain Family Member 4 ACSL4 Involved in lipid biosynthesis and fatty acid degradation.

Dicer 1, Ribonuclease III DICER1 Processes microRNAs and small interfering RNAs for gene silencing.

Macrophage Migration Inhibitory Factor MIF Cytokine involved in innate immunity and cell proliferation.

Major Histocompatibility Complex, Class I, A HLA-A Involved in antigen presentation to immune cells.

Secreted Frizzled-Related Protein 4 SFRP4 Regulator of Want signaling pathway, affecting cell proliferation.

Plasma retinol-binding protein RBP4 Retinol-binding protein that mediates retinol transport in blood plasma.

Infraglabellar transport protein 88 homologs IFT88 Involved in primary cilium biogenesis and autophagy.

Basal cell adhesion molecule BCAM Laminin alpha-5 receptor. May mediate intracellular signaling.

Zinc-alpha-2-glycoprotein AZGP1 Stimulates lipid degradation in adipocytes, causing fat loss in cancer.

My box-dependent-interacting protein 1 BIN1 Key player in membrane curvature, remodeling, and endocytosis regulation.

Proteasome activator complex subunit 3 PSME3 Subunit of the proteasome regulator complex, involved in protein degradation.

Casein kinase II subunit beta CSNK2B Participates in Want signaling and basal catalytic activity regulation.

Plasma protease C1 inhibitor SERPING1 Inhibitor of complement activation, blood coagulation, and fibrinolysis.
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Voltage-dependent anion-selective channel protein 1 VDAC1 Forms a channel through the mitochondrial outer membrane and regulates 
apoptosis.

Profilin-1 PFN1 Binds to actin and affects cytoskeleton structure.

Processed cyclic AMP-dependent transcription factor 
ATF-6 alpha ATF6 Transmembrane glycoprotein functioning as a transcription activator in ER 

stress response.

Tumor Protein P53 TP53 Key tumor suppressor involved in DNA repair, apoptosis, and cell cycle 
regulation.

DNA-dependent protein kinase catalytic subunit PRKDC Serine/threonine-protein kinase involved in DNA damage repair.

Complement factor I heavy chain CFI plays role in regulating the immune response by controlling all complement 
pathways.

Microsomal triglyceride transfer protein large subunit MTTP
Catalyzes the transport of triglyceride, cholesteryl ester, and phospholipid 
between phospholipid surfaces. Required for the secretion of plasma 
lipoproteins that contain apolipoprotein B.

Twist-related protein 1 TWIST1
Acts as a transcriptional regulator. Inhibits myogenesis by sequestrating E 
proteins. Also represses expression of proinflammatory cytokines such as TNFA 
and IL1B. Regulates cranial suture patterning and fusion.

Phosphoinositide-3-Kinase Regulatory Subunit 1 PIK3R1

Binds to activated protein-Tyr kinases. Is necessary for the insulin-stimulated 
increase in glucose uptake and glycogen synthesis in insulin-sensitive tissues. 
Plays an important role in signaling in response to FGFR1-4, KITLG/SCF, KIT, 
PDGFRA and PDGFRB. Likewise, plays a role in ITGB2 signaling. Modulates the 
cellular response to ER stress.

Thioredoxin TXN Participates in redox reaction. contributes to the response to intracellular nitric 
oxide

Ras GTPase-activating-like protein IQGAP2

Interacts with components of the cytoskeleton, with cell adhesion molecules, 
and with several signaling molecules to regulate cell morphology and motility. 
It acts as a tumor suppressor and has been found to play a role in regulating 
innate antiviral responses.

Properdin CFP
Binds to many microbial surfaces and apoptotic cells and stabilizes the C3- and 
C5-convertase enzyme complexes in a feedback loop that ultimately leads to 
formation of the membrane attack complex and lysis of the target cell.

Complement C3c alpha' chain fragment 1 C3 plays a central role in the activation of the complement system.

Complement C5 alpha' chain C5 plays role in inflammation, host homeostasis, and host defense against 
pathogens.

Nicastrin NCSTN

It is an integral component of the multimeric gamma-secretase complex. The 
encoded protein cleaves integral membrane proteins, including Notch receptors 
and beta-amyloid precursor protein, stabilizing cofactor required for gamma-
secretase complex assembly.

Beta-2-glycoprotein 1 APOH
It has been implicated in a variety of physiologic pathways including 
lipoprotein metabolism, coagulation, and the production of antiphospholipid 
autoantibodies.

Peroxiredoxin-1 PRDX1

Plays a role in cell protection against oxidative stress by detoxifying peroxides 
and as sensor of hydrogen peroxide-mediated signaling events. Might 
participate in the signaling cascades of growth factors and tumor necrosis 
factor-alpha.

Apoptosis-stimulating of p53 protein 2 TP53BP2 Regulator that plays a central role in regulation of apoptosis and cell growth via 
its interactions with proteins such as TP53.

Apolipoprotein E APOE mainly functions in lipoprotein-mediated lipid transport between organs via the 
plasma and interstitial fluids.

Apolipoprotein B-100 APOB Apo B- 100 functions as a recognition signal for the cellular binding and 
internalization of LDL particles by the apo/E receptor.

Hydroxy acid oxidase 2 HAO2 Catalyzes the oxidation of L-alpha-hydroxy acids as well as, more slowly, that of 
L-alpha-amino acids.

Ribosomal protein L39 like RPL39L
Belongs to the eukaryotic ribosomal protein eL39 family. It is not currently 
known whether the encoded protein is a functional ribosomal protein or 
whether it has evolved a function that is independent of the ribosome.

Transcription factor AP-1 JUN

Transcription factor that recognizes and binds to the enhancer heptamer motif 
5'-TGA[CG]TCA-3'. Promotes activity of NR5A1 when phosphorylated by HIPK3 
leading to increased steroidogenic gene expression. Involved in activated KRAS-
mediated transcriptional activation of USP28 in colorectal cancer cells.

Serine/threonine-protein kinase PLK1 PLK1

M phase of the cell cycle, including the regulation of centrosome maturation 
and spindle assembly, the removal of cohesins from chromosome arms, the 
inactivation of anaphase- promoting complex/cyclosome inhibitors and the 
regulation of mitotic exit and cytokinesis

E3 ubiquitin-protein ligase SIAH1 SIAH1 Mediates ubiquitination and subsequent proteasomal degradation of target 
proteins.

Fibronectin FN1

Fibronectins are involved in cell adhesion, cell motility, opsonization, wound 
healing, and maintenance of cell shape. Involved in osteoblast compaction, 
essential for osteoblast mineralization. Participates in the regulation of type I 
collagen deposition by osteoblasts.
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Interferon-induced, double-stranded RNA-activated 
protein kinase EIF2AK2

Plays a key role in the innate immune response to viral infection and is also 
involved in the regulation of signal transduction, apoptosis, cell proliferation 
and differentiation.

Eukaryotic translation initiation factor 1 EIF1
Enables ribosomal small subunit binding activity and translation initiation 
factor activity. Involved in regulation of translational initiation and translational 
initiation.

Coiled-Coil Domain Containing 88A CCDC88A Plays a role in cytoskeleton remodeling and cell migration.

Serotransferrin TF
Transport of iron from sites of absorption and heme degradation to those 
of storage and utilization. Serum transferrin may also have a further role in 
stimulating cell proliferation.

Heterogeneous nuclear ribonucleoprotein K HNRNPK

These proteins are associated with pre-mRNAs in the nucleus and appear to 
influence pre-mRNA processing and other aspects of mRNA metabolism and 
transport. Can also bind poly(C) single-stranded DNA. Plays an important role 
in p53/TP53 response to DNA damage, acting at the level of both transcription 
activation and repression. When SUMOylate, acts as a transcriptional 
coactivator of p53/TP53.

Far upstream element-binding protein 3 FUBP3 May interact with single-stranded DNA from the far-upstream element (FUSE). 
May activate gene expression.

Serine/threonine-protein kinase WNK1 WNK1

Plays an important role in the regulation of electrolyte homeostasis, cell 
signaling, survival, and proliferation. Acts as an activator and inhibitor of 
sodium-coupled chloride cotransporters and potassium-coupled chloride 
cotransporters respectively.

Fatty Acid Synthase FASN Catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA 
and NADPH.

Growth factor receptor-bound protein 2 GRB2 Adapter protein that provides a critical link between cell surface growth factor 
receptors and the Ras signaling pathway

Serine-protein kinase ATM ATM
Act as a DNA damage sensor, regulating DNA damage response mechanism. 
Also plays a role in pre-B cell allelic exclusion, a process leading to expression of 
a single immunoglobulin heavy chain allele.

Calreticulin CALR

Calcium-binding chaperone that promotes folding, oligomeric assembly 
and quality control in the endoplasmic reticulum (ER) via the calreticulin/
calnexin cycle. Interacts with the DNA-binding domain of NR3C1 and mediates 
its nuclear export. Involved in maternal gene expression regulation. May 
participate in oocyte maturation.

Histidine-rich glycoprotein HRG

Plasma glycoprotein that binds a number of ligands such as heme, heparin, 
heparan sulfate, thrombospondin, plasminogen, and divalent metal ions. Acts 
as an adapter protein and is implicated in regulating many processes such 
as immune complex and pathogen clearance, cell chemotaxis, cell adhesion, 
angiogenesis, coagulation and fibrinolysis. Mediates clearance of necrotic cells.

Tumor protein p73 TP73 Participates in the apoptotic response to DNA damage. May be a tumor 
suppressor protein.

Cyclin-dependent kinase inhibitor 1 CDKN1A May be involved in p53/TP53 mediated inhibition of cellular proliferation in 
response to DNA damage.

Translocating chain-associated membrane protein 1 TRAM1 Stimulatory or required for the translocation of secretory proteins across the ER 
membrane.

Serpin family A member 1 SERPINA1
Inhibitor of serine proteases. Its primary target is elastase, but it also has 
a moderate affinity for plasmin and thrombin. Irreversibly inhibits trypsin, 
chymotrypsin and plasminogen activator.

Transforming growth factor beta-1-induced transcript 
1 protein TGFB1I1 Functions as a molecular adapter coordinating multiple protein-protein 

interactions at the focal adhesion complex and in the nucleus.

Clathrinid heavy chain 1 CLTC
Clathrinid is the major protein of the polyhedral coat of coated pits and vesicles. 
These specialized organelles are involved in the intracellular trafficking of 
receptors and endocytosis of a variety of macromolecules.

Lys phosphatidylcholine acyltransferase 1 LPCAT1

Possesses both acyltransferase and acetyltransferase activities. Plays 
a role in phospholipid metabolism, specifically in the conversion of Lys 
phosphatidylcholine to phosphatidylcholine in the presence of acyl-CoA. This 
process is important in the synthesis of lung surfactant and platelet-activating 
factor (PAF).

NEDD4 binding protein 2 like 2 N4BP2L2
Enables enzyme binding activity. Involved in negative regulation of 
hematopoietic stem cell differentiation and positive regulation of hematopoietic 
stem cell proliferation.

DE tyrosinated tubulin alpha-1B chain TUBA1B
Enables GTP binding activity and ubiquitin protein ligase binding activity. A 
structural constituent of cytoskeleton. Involved in microtubule cytoskeleton 
organization.

Zinc finger MYM-type protein 2 ZMYM2 May act as a transcription factor and may be part of a BHC histone deacetylase 
complex.

Exportin-1 XPO1 Mediates the nuclear export of cellular proteins (cargos) bearing a leucine-rich 
nuclear export signal.

Golgi-associated plant pathogenesis-related protein 1 GLIPR2
Enables protein homodimerization activity. Involved in positive regulation of 
ERK1 and ERK2 cascade; positive regulation of epithelial cell migration; and 
positive regulation of epithelial to mesenchymal transition.
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Complement component 1 Q C1QBP

Multifunctional protein involved in inflammation and infection processes, 
ribosome biogenesis, protein synthesis in mitochondria, regulation of apoptosis, 
transcriptional regulation and pre-mRNA splicing. At the cell surface is thought 
to act as an endothelial receptor for plasma proteins of the complement and 
kallikrein-kinin cascades.

Exportin-5 XPO5 Mediates the nuclear export of proteins bearing a double- stranded RNA 
binding domain and double-stranded RNAs (cargos).

Stabilin-1 STAB1

Acts as a scavenger receptor for acetylated low-density lipoprotein. Binds to 
both Gram-positive and Gram-negative bacteria and may play a role in defense 
against bacterial infection. May plays role in angiogenesis. Involved in the 
delivery of newly synthesized CHID1/SI-CLP from the biosynthetic compartment 
to the endosomal/lysosomal system.

Inhibitor of nuclear factor kappa-B kinase subunit 
epsilon IKBKE Plays an essential role in regulating inflammatory responses to viral infection. 

Also involved in TNFA and inflammatory cytokines, like Interleukin-1, signaling.

GTPase Has HRAS Involved in the activation of Ras protein signal transduction.

Tyrosine-protein kinase JAK1 JAK1 Involved in the IFN-alpha/beta/gamma signal pathway. Kinase partner for the 
Interleukin (IL)-2 receptor as well as Interleukin (IL)-10 receptor.

Cathepsin B heavy chain CTSB

Thiol protease which is believed to participate in intracellular degradation 
and turnover of proteins. Involved in the solubilization of cross-linked TG/
thyroglobulin in the md follicle lumen (By similarity). Has also been implicated 
in tumor invasion and metastasis.

Chaperonin Containing TCP1 Subunit 3 CCT3 Assists the folding of proteins upon ATP hydrolysis. Involved in callogenesis 
regulating transports vesicles to the cilia.

Serpin B3 SERPINB3
May act as a papain-like cysteine protease inhibitor to modulate the host 
immune response against tumor cells. Also functions as an inhibitor of UV-
induced apoptosis.

Serpin B4 SERPINB4 May act as a protease inhibitor to modulate the host immune response against 
tumor cells.

Triosephosphate isomerase TPI1 Catalyzes the interconversion between dihydroxyacetone phosphate and 
D-glyceraldehyde-3-phosphate in glycolysis and gluconeogenesis.

Protein mono-ADP-ribosyl transferase PARP4 PARP4 Mono-ADP-ribosyl transferase that mediates mono-ADP- ribosylation of target 
proteins.

Annexin A2 ANXA2

Plays a role in the regulation of cellular growth and in signal transduction 
pathways. This protein functions as an autocrine factor which heightens 
osteoclast formation and bone resorption. May be involved in heat-stress 
response.

Macrophage stimulating 1 MST1 The receptor for this protein is RON tyrosine kinase, which upon activation 
stimulates ciliary motility of ciliated epithelial lung cells.

Proto-oncogene c-Fos FOS
I implicated as regulators of cell proliferation, differentiation, and 
transformation. In some cases, expression of the FOS gene has also been 
associated with apoptotic cell death.

Activation peptide fragment 1, Thrombin F2

Plays role in thrombosis and hemostasis by converting fibrinogen to fibrin 
during blood clot formation, by stimulating platelet aggregation, and by 
activating additional coagulation factors. Thrombin also plays a role in cell 
proliferation, tissue repair, angiogenesis, and maintaining vascular integrity 
during development and postnatal life.

Telomeric repeat-binding factor 1 TERF1 Functions as an inhibitor of telomerase, acting in cis to limit the elongation of 
individual chromosome ends.

Coagulation factor V heavy chain F5
Central regulator of hemostasis. It serves as a critical cofactor for the 
prothrombinase activity of factor Xa that results in the activation of 
prothrombin to thrombin.

Src substrate cortactin CTTN

Contributes to the organization of the actin cytoskeleton and cell shape. Plays 
a role in the formation of lamellipodia and in cell migration. Plays a role in the 
regulation of neuron morphology, axon growth and formation of neuronal 
growth cones. Plays a role in the invasiveness of cancer cells, and the formation 
of metastases. Plays a role in focal adhesion assembly and turnover.

Leucine-rich repeat-containing protein 7 LRRC7
Involved in several processes, including establishment or maintenance of 
epithelial cell apical/basal polarity; protein localization to post synapse; and 
receptor clustering.

GO term enrichment analysis

To further investigate the molecular mechanisms underlying 
this association, we integrated functional enrichment analysis 
from Gene Ontology (GO) terms, using the DAVID (the data-
base for database for annotation, visualization, and integrated 
discovery), with disease enrichment results. A total of 951 en-
riched molecular functions, 952 enriched cellular components, 
and 935 enriched biological processes were identified. The en-
richment analysis highlights key cellular vulnerabilities exploit-

ed by the virus, revealing disruptions in chromatin organization, 
protein stability, and immune signaling. The most significant 
biological processes suggest viral interference in CENP-A chro-
matin assembly and heterochromatin organization, potentially 
altering host transcriptional control. Molecular function en-
richment points to a strong reliance on host protein and RNA 
interactions, indicative of viral strategies to hijack cellular ma-
chinery for replication. At the cellular level, the virus appears to 
exploit exosome-mediated communication, possibly facilitating 
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Table 2: Enriched pathways and Gene Ontology (GO) terms 
identified in human proteins interacting with HEV, with significance 
determined by a Benjamini-corrected P-value threshold of less 
than 0.005.

Category Enriched feature FDR

Biological 
process

GO:0061644~protein localization 
to CENP-A containing chromatin 3.32832254966858E-14

GO:0006457~protein folding 2.12722294878199E-10

GO:0070828~heterochromatin 
organization 4.17107969509387e-10

GO:0032200~telomere 
organization 5.82809530208538E-08

GO:0070828~heterochromatin 
organization 8.11398252391831E-08

GO:0050821~protein 
stabilization 1.25068263190799E-07

Molecular 
function

GO:0005515~protein binding 4.05998083208454e-47

GO:0003723~RNA binding 5.7682099654084e-39

GO:0042802~identical protein 
binding 4.060779610109531e-15

GO:0046982~protein 
heterodimerization activity 9.437589681332071e-15

GO:0030527~structural 
constituent of chromatin 5.27854694418556e-12

GO:0051082~unfolded protein 
binding 7.88111707287244e-12

Cellular 
component

GO:0070062~extracellular 
exosome

1.6343913724867799e-
56

GO:0005829~cytosol 3.05738267468569e-33

GO:0016020~membrane 6.30745126373513e-20

GO:0005788~endoplasmic 
reticulum lumen 7.97372108526913E-19

GO:0005654~nucleoplasm 4.98558821612305e-17

GO:0005634~nucleus 1.10134180696361e-16

Pathway

hsa04613: Neutrophil 
extracellular trap formation 3.37130810300817E-12

hsa04141: Protein processing in 
endoplasmic reticulum 6.83092976782834E-11

hsa04217: Necroptosis 5.23420960298492E-08

hsa05203: Viral carcinogenesis 6.07809950705983E-08

hsa04137: Mitophagy - animal 0.0000460711373164893

hsa03082: ATP-dependent 
chromatin remodeling 0.0000655797631657286

immune evasion and systemic spread. Pathway enrichment fur-
ther reinforces a link to oncogenic processes, with signatures of 
endoplasmic reticulum stress, immune modulation, and meta-
bolic shifts that may contribute to persistent infection and tu-
morigenesis.

The GO enrichment analysis highlighted several functional 
categories that are biologically relevant to liver cancer develop-
ment:

Proteostasis and Endoplasmic Reticulum (ER) stress: The 
enrichment of protein folding and protein stabilization, along 
with protein processing in the ER suggests that viral proteins 
may exploit host orthostasis pathways to evade degradation. 
Cancer cells, particularly in HCC, rely on enhanced protein fold-
ing mechanisms to cope with metabolic stress, and viral ma-
nipulation of these pathways may promote tumor survival and 
immune evasion [78].

Chromatin organization and telomere stability: The enrich-
ment of protein localization to CENP-A containing chromatin 

and heterochromatin organization suggests viral interference in 
epigenetic regulation, potentially altering host transcriptional 
programs. The enrichment of telomere organization further 
suggests that viral interactions may influence telomere stabil-
ity, a key factor in cellular senescence and cancer progression. 
Telomere dysfunction is a known driver of HCC, as it contributes 
to genomic instability and uncontrolled proliferation, which are 
critical for tumor initiation [79].

RNA binding and translational control: The enrichment of 
RNA binding and protein binding suggests viral interference 
with host RNA metabolism, likely affecting gene expression and 
viral replication efficiency. In liver cancer, dysregulation of RNA-
Binding Proteins (RBPs) is associated with oncogene activation, 
alternative splicing abnormalities, and immune evasion [80,81].

Inflammatory and cell death pathways: The enrichment of 
neutrophil extracellular trap formation and necroptosis sug-
gests a viral role in shaping the immune response and cell death 
mechanisms [82]. Chronic inflammation and non-apoptotic cell 
death mechanisms such as necroptosis have been implicated in 
HCC progression, further supporting a connection between viral 
infection and pro-tumorigenic inflammation [83].

Mitochondrial quality control and mitophagy: The enrich-
ment of mitophagy indicates viral modulation of mitochondrial 
turnover and metabolic adaptation. Mitophagy plays a dual 
role in liver cancer, preventing excessive oxidative stress in ear-
ly tumorigenesis but later enabling tumor survival by remov-
ing damaged mitochondria. Viral regulation of mitophagy may 
facilitate metabolic reprogramming, allowing infected cells to 
adapt to stress while maintaining energy homeostasis [84]. The 
significant enriched gene ontology terms and KEGG pathways 
are outlined in (Table 2). 

Discussion

Predicting protein interactions, especially in host-pathogen 
systems, is challenging, and even small improvements over ran-
dom guessing are valuable. This is even harder for pathogens 
like HEV, which have not been studied as much as their global 
impact warrants, making it difficult to assess the accuracy of 
predictions. HEV codes three or four Open Reading Frames 
(ORFs) depending on the genotype. ORF1 encodes a multifunc-
tional nonstructural polyprotein involved in viral replication, 
containing domains such as a methyltransferase [85], helicase, 
and RNA-dependent RNA polymerase. ORF2 codes for the 
capsid protein, essential for viral assembly and host immune 
interactions. ORF3 is a small phosphoprotein that regulates vi-
ral egress, immune modulation, and host signaling pathways. 
In genotype 1, an additional ORF4 enhances viral replication 
under stress conditions by interacting with the viral RNA poly-
merase. Using affinity chromatography, immunoprecipitation, 
and two-hybrid assays, recent studies have revealed that HEV 
hijacks multiple human proteins to facilitate its replication and 
evade immune responses. HNRNPK and HNRNPA2B1 assist 
HEV polymerase and RNA processing, while SHARPIN and RNF5 
modulate interferon signaling through ORF3. Additional host 
factors, such as FTL, TMEM154, FCGR2A, and STUB1, further 
highlight HEV’s interaction with cellular pathways like ubiqui-
tination, viral entry, and immune modulation [86,87]. As one of 
the few machines learning-based investigations in this area, our 
study builds on Barman et al. [14], who used SVM, Naïve Bayes, 
and Random Forest, achieving 74% accuracy and 83% speci-
ficity but lacked HEV-specific validation. Our expanded classi-
fier set, including Decision Trees (DT) and Logistic Regression 
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(LR), improved sensitivity (up to 77%) at the cost of specificity 
(max 52%), prioritizing novel interaction discovery over mini-
mizing false positives. Feature selection is another key distinc-
tion. Barman et al. relied on domain-domain associations and 
amino acid composition, whereas our model incorporates sev-
eral descriptors, including GC content, gene ontology similarity, 
and structural attributes, enhancing biological relevance. This 
broader feature set likely contributes to higher sensitivity, mak-
ing our approach more suited for exploratory HEV-host interac-
tion discovery. Furthermore, our evaluation framework extends 
beyond standard metrics, integrating prevalence rate, AUC, and 
interpretability analyses for a more biologically meaningful as-
sessment. While Barman’s model is ideal for high-specificity 
predictions, ours excels in capturing novel interactions, empha-
sizing sensitivity for comprehensive PPI mapping. To date, no 
study has systematically elucidated the molecular mechanisms 
by which HEV may contribute to hepatocarcinogenesis. The re-
views by Klahn et al. (2021) and Shen et al. (2023) highlight that 
although direct evidence for HEV-driven hepatocellular carci-
noma is scarce, chronic HEV infection has been associated with 
liver fibrosis, cirrhosis, and immune dysregulation, all of which 
are recognized risk factors for HCC. Our study identified sig-
nificant enrichment in pathways related to viral carcinogenesis, 
hepatitis B and C, and apoptosis, indicating that HEV-associated 
protein interactions may engage pathways known to contribute 
to liver disease progression. Furthermore, we identified a sig-
nificant association between virus-interacting host proteins and 
liver carcinoma. Although epidemiological studies have not yet 
firmly established HEV as an independent oncogenic virus, the 
presence of overlapping host responses with established viral 
carcinogenesis pathways suggests that HEV infection could act 
as a cofactor in liver disease progression, particularly in patients 
with pre-existing liver conditions. The literature suggests that 
HEV may contribute to HCC by inhibiting the PI3K/AKT/mTOR 
pathway while modulating apoptosis and angiogenesis regula-
tors. This includes Bax, Bcl-2, Apaf-1, caspase-3, caspase-9, and 
angiogenesis-related proteins DHX9 and TGFB, all of which are 
implicated in tumor progression [88]. Given the growing recog-
nition of chronic HEV infections in immunocompromised indi-
viduals, further research is needed to determine whether per-
sistent HEV infection alone contributes to hepatocarcinogenesis 
or primarily exacerbates underlying liver pathology. Its poten-
tial role in HCC progression raises concerns about the need for 
preventive measures in HEV-infected individuals.

Conclusion

A comprehensive gold standard for human-HEV protein in-
teractions is currently lacking. However, despite the limited 
known HEV-human interactions, our method demonstrates ro-
bust predictive capability, aligning with findings from existing 
studies. By broadening classifier diversity and enhancing bio-
logical interpretability, our study provides a more comprehen-
sive framework for HEV-host Protein-Protein Interaction (PPI) 
prediction. The predicted interactions shed light on potential 
viral mechanisms and highlight key pathways that warrant fur-
ther investigation. Future experimental studies should focus 
on validating these host-virus interactions to determine their 
direct role in liver carcinogenesis and assess their therapeutic 
potential in virus-associated liver cancer.
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